The Community for Technology Leaders
Green Image
Issue No. 09 - September (2009 vol. 31)
ISSN: 0162-8828
pp: 1616-1629
Anuj Srivastava , Florida State University, Tallahassee
Ian H. Jermyn , INRIA (Ariana), France
We study the problem of identifying shape classes in point clouds. These clouds contain sampled points along contours and are corrupted by clutter and observation noise. Taking an analysis-by-synthesis approach, we simulate high-probability configurations of sampled contours using models learned from training data to evaluate the given test data. To facilitate simulations, we develop statistical models for sources of (nuisance) variability: 1) shape variations within classes, 2) variability in sampling continuous curves, 3) pose and scale variability, 4) observation noise, and 5) points introduced by clutter. The variability in sampling closed curves into finite points is represented by positive diffeomorphisms of a unit circle. We derive probability models on these functions using their square-root forms and the Fisher-Rao metric. Using a Monte Carlo approach, we simulate configurations from a joint prior on the shape-sample space and compare them to the data using a likelihood function. Average likelihoods of simulated configurations lead to estimates of posterior probabilities of different classes and, hence, Bayesian classification.
Shape classification, clutter model, Fisher-Rao metric, planar shape model, diffeomorphism.

A. Srivastava and I. H. Jermyn, "Looking for Shapes in Two-Dimensional Cluttered Point Clouds," in IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 31, no. , pp. 1616-1629, 2008.
87 ms
(Ver 3.3 (11022016))