The Community for Technology Leaders
Green Image
Issue No. 08 - August (2009 vol. 31)
ISSN: 0162-8828
pp: 1502-1509
Rozenn Dahyot , Trinity College Dublin, Dublin
ABSTRACT
The Standard Hough Transform is a popular method in image processing and is traditionally estimated using histograms. Densities modeled with histograms in high dimensional space and/or with few observations, can be very sparse and highly demanding in memory. In this paper, we propose first to extend the formulation to continuous kernel estimates. Second, when dependencies in between variables are well taken into account, the estimated density is also robust to noise and insensitive to the choice of the origin of the spatial coordinates. Finally, our new statistical framework is unsupervised (all needed parameters are automatically estimated) and flexible (priors can easily be attached to the observations). We show experimentally that our new modeling encodes better the alignment content of images.
INDEX TERMS
Hough transform, Radon transform, kernel probability density function, uncertainty, line detection.
CITATION
Rozenn Dahyot, "Statistical Hough Transform", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 31, no. , pp. 1502-1509, August 2009, doi:10.1109/TPAMI.2008.288
99 ms
(Ver )