The Community for Technology Leaders
Green Image
Issue No. 07 - July (2009 vol. 31)
ISSN: 0162-8828
pp: 1210-1224
Jianke Zhu , The Chinese University of Hong Kong, Hong Kong
Michael R. Lyu , The Chinese University of Hong Kong, Hong Kong
Thomas S. Huang , University of Illinois at Urbana-Champaign, Urbana
In this paper, we present a fusion approach to solve the nonrigid shape recovery problem, which takes advantage of both the appearance information and the local features. We have two major contributions. First, we propose a novel progressive finite Newton optimization scheme for the feature-based nonrigid surface detection problem, which is reduced to only solving a set of linear equations. The key is to formulate the nonrigid surface detection as an unconstrained quadratic optimization problem that has a closed-form solution for a given set of observations. Second, we propose a deformable Lucas-Kanade algorithm that triangulates the template image into small patches and constrains the deformation through the second-order derivatives of the mesh vertices. We formulate it into a sparse regularized least squares problem, which is able to reduce the computational cost and the memory requirement. The inverse compositional algorithm is applied to efficiently solve the optimization problem. We have conducted extensive experiments for performance evaluation on various environments, whose promising results show that the proposed algorithm is both efficient and effective.
Image processing and computer vision, nonrigid detection, real-time deformable registration, nonrigid augmented reality, medical image registration.

J. Zhu, T. S. Huang and M. R. Lyu, "A Fast 2D Shape Recovery Approach by Fusing Features and Appearance," in IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 31, no. , pp. 1210-1224, 2008.
88 ms
(Ver 3.3 (11022016))