The Community for Technology Leaders
Green Image
Issue No. 05 - May (2009 vol. 31)
ISSN: 0162-8828
pp: 783-794
Carl Olsson , Lund University, Lund
Fredrik Kahl , Lund University, Lund
Magnus Oskarsson , Lund University, Lund
In this paper, we propose a practical and efficient method for finding the globally optimal solution to the problem of determining the pose of an object. We present a framework that allows us to use point-to-point, point-to-line, and point-to-plane correspondences for solving various types of pose and registration problems involving euclidean (or similarity) transformations. Traditional methods such as the iterative closest point algorithm or bundle adjustment methods for camera pose may get trapped in local minima due to the nonconvexity of the corresponding optimization problem. Our approach of solving the mathematical optimization problems guarantees global optimality. The optimization scheme is based on ideas from global optimization theory, in particular convex underestimators in combination with branch-and-bound methods. We provide a provably optimal algorithm and demonstrate good performance on both synthetic and real data. We also give examples of where traditional methods fail due to the local minima problem.
Registration, camera pose, global optimization, branch-and-bound.

C. Olsson, M. Oskarsson and F. Kahl, "Branch-and-Bound Methods for Euclidean Registration Problems," in IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 31, no. , pp. 783-794, 2008.
94 ms
(Ver 3.3 (11022016))