The Community for Technology Leaders
Green Image
Issue No. 02 - February (2009 vol. 31)
ISSN: 0162-8828
pp: 275-287
Layne T. Watson , Virginia Polytechnic Institute and State Univeristy, Blacksburg
Shihao Ji , Duke University, Durham
Lawrence Carin , Duke University, Durham
Hidden Markov model (HMM) classifier design is considered for the analysis of sequential data, incorporating both labeled and unlabeled data for training; the balance between the use of labeled and unlabeled data is controlled by an allocation parameter \lambda \in [0, 1), where \lambda = 0 corresponds to purely supervised HMM learning (based only on the labeled data) and \lambda = 1 corresponds to unsupervised HMM-based clustering (based only on the unlabeled data). The associated estimation problem can typically be reduced to solving a set of fixed-point equations in the form of a "natural-parameter homotopy.
Semisupervised learning, homotopy method, hidden Markov models (HMMs), supervised learning.
Layne T. Watson, Shihao Ji, Lawrence Carin, "Semisupervised Learning of Hidden Markov Models via a Homotopy Method", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 31, no. , pp. 275-287, February 2009, doi:10.1109/TPAMI.2008.71
76 ms
(Ver 3.3 (11022016))