The Community for Technology Leaders
Green Image
Issue No. 11 - November (2008 vol. 30)
ISSN: 0162-8828
pp: 1998-2010
Yali Amit , University of Chicago, Chicago
Leandro Cortés , University of Chicago, Chicago
ABSTRACT
We describe an algorithm for the efficient annotation of events of interest in video microscopy. The specific application involves the detection and tracking of multiple p ossibly overlapping vesicles in total internal reflection fluorescent microscopy images. A st atistical model for the dynamic image data of vesicle configurations allows us to properly weight various hypotheses online. The goal is to find the most likely trajectories given a sequence of images. The computational challenge is addressed by defining a sequence of coarse-to-fine tests, derived from the statistical model, to quickly eliminate most candidate positions at each time frame. The computational load of the tests is initially very low and gradually in creases as the false positives become more difficult to eliminate. Only at the last step, state variables are estimated from a complete time- dependent model. Processing time thus mainly depends on the number of vesicles in the image and not on image size.
INDEX TERMS
Multiple object detection, Coarse to fine computation, Statistical modeling, Event triage, biological imaging
CITATION
Yali Amit, Leandro Cortés, "Efficient Annotation of Vesicle Dynamics Video Microscopy", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 30, no. , pp. 1998-2010, November 2008, doi:10.1109/TPAMI.2008.84
91 ms
(Ver 3.1 (10032016))