The Community for Technology Leaders
Green Image
Local image features have been designed to be informative and repeatable under rigid transformations and illumination deformations. Even though current state-of-the-art local image features present a high degree of repeatability, their local appearance alone usually does not bring enough discriminative power to support a reliable matching, resulting in a relatively high number of mismatches in the correspondence set formed during the data association procedure. As a result, geometric filters, commonly based on global spatial configuration, have been used to reduce this number of mismatches. However, this approach presents a trade off between the effectiveness to reject mismatches and the robustness to non-rigid deformations. In this paper, we propose two geometric filters, based on semilocal spatial configuration of local features, that are designed to be robust to non-rigid deformations and to rigid transformations, without compromising its efficacy to reject mismatches. We compare our methods to the Hough transform, which is an efficient and effective mismatch rejection step based on global spatial configuration of features. In these comparisons, our methods are shown to be more effective in the task of rejecting mismatches for rigid transformations and non-rigid deformations at comparable time complexity figures. Finally, we demonstrate how to integrate these methods in a probabilistic recognition system such that the final verification step uses not only the similarity between features, but also their semi-local configuration.
Local image feature, Feature clustering, Visual object recognition, Wide baseline matching, Long range matching

A. D. Jepson and G. Carneiro, "Flexible Spatial Configuration of Local Image Features," in IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 29, no. , pp. 2089-2104, 2007.
93 ms
(Ver 3.3 (11022016))