The Community for Technology Leaders
Green Image
This paper presents a new approach to rotation invariant texture classification. The proposed approach benefits from the fact that most of the texture patterns either have directionality (anisotropic textures) or are not with a specific direction (isotropic textures). The wavelet energy features of the directional textures change significantly when the image is rotated. However, for the isotropic images, the wavelet features are not sensitive to rotation. Therefore, for the directional textures, it is essential to calculate the wavelet features along a specific direction. In the proposed approach, the Radon transform is first employed to detect the principal direction of the texture. Then, the texture is rotated to place its principal direction at 0 degrees. A wavelet transform is applied to the rotated image to extract texture features. This approach provides a features space with small intraclass variability and, therefore, good separation between different classes. The performance of the method is evaluated using three texture sets. Experimental results show the superiority of the proposed approach compared with some existing methods.
Texture classification, Radon transform, wavelet transform, rotation invariance.
Hamid Soltanian-Zadeh, Kourosh Jafari-Khouzani, "Radon Transform Orientation Estimation for Rotation Invariant Texture Analysis", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 27, no. , pp. 1004-1008, June 2005, doi:10.1109/TPAMI.2005.126
114 ms
(Ver 3.3 (11022016))