The Community for Technology Leaders
Green Image
Issue No. 06 - June (2005 vol. 27)
ISSN: 0162-8828
pp: 892-907
U. Braga-Neto , Virology & Exp. Therapy Lab., Aggeu Magalhaes Res. Center, Recife, Brazil
This paper introduces a novel approach for image analysis based on the notion of multiscale connectivity. We use the proposed approach to design several novel tools for object-based image representation and analysis, which exploit the connectivity structure of images in a multiscale fashion. More specifically, we propose a nonlinear pyramidal image representation scheme, which decomposes an image at different scales by means of multiscale grain filters. These filters gradually remove connected components from an image that fail to satisfy a given criterion. We also use the concept of multiscale connectivity to design a hierarchical data partitioning tool. We employ this tool to construct another image representation scheme, based on the concept of component trees, which organizes partitions of an image in a hierarchical multiscale fashion. In addition, we propose a geometrically-oriented hierarchical clustering algorithm which generalizes the classical single-linkage algorithm. Finally, we propose two object-based multiscale image summaries, reminiscent of the well-known (morphological) pattern spectrum, which can be useful in image analysis and image understanding applications.
Image analysis, Image representation, Clustering algorithms, Image sequence analysis, Image segmentation, Filters, Partitioning algorithms, Image coding, Pixel, Morphology

U. Braga-Neto and J. Goutsias, "Object-based image analysis using multiscale connectivity," in IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 27, no. 6, pp. 892-907, .
205 ms
(Ver 3.3 (11022016))