The Community for Technology Leaders
Green Image
Issue No. 11 - November (2004 vol. 26)
ISSN: 0162-8828
pp: 1424-1437
Il-Seok Oh , IEEE
This paper proposes a novel hybrid genetic algorithm for feature selection. Local search operations are devised and embedded in hybrid GAs to fine-tune the search. The operations are parameterized in terms of their fine-tuning power, and their effectiveness and timing requirements are analyzed and compared. The hybridization technique produces two desirable effects: a significant improvement in the final performance and the acquisition of subset-size control. The hybrid GAs showed better convergence properties compared to the classical GAs. A method of performing rigorous timing analysis was developed, in order to compare the timing requirement of the conventional and the proposed algorithms. Experiments performed with various standard data sets revealed that the proposed hybrid GA is superior to both a simple GA and sequential search algorithms.
Feature selection, hybrid genetic algorithm, sequential search algorithm, local search operation, atomic operation, multistart algorithm.

B. Moon, I. Oh and J. Lee, "Hybrid Genetic Algorithms for Feature Selection," in IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 26, no. , pp. 1424-1437, 2004.
96 ms
(Ver 3.3 (11022016))