Issue No. 04 - April (2002 vol. 24)

ISSN: 0162-8828

pp: 550-555

DOI Bookmark: http://doi.ieeecomputersociety.org/10.1109/34.993561

ABSTRACT

<p>In the literature, the PnP problem is indistinguishably defined as either to determine the distances of the control points from the camera's optical center or to determine the transformation matrices from the object-centered frame to the camera-centered frame. In this paper, we show that these two definitions are generally not equivalent. In particular, we prove that, if the four control points are not coplanar, the upper bound of the P4P problem under the distance-based definition is 5 and also attainable, whereas the upper bound of the P4P problem under the transformation-based definition is only 4. Finally, we study the conditions under which at least two, three, four, and five different positive solutions exist in the distance based noncoplanar P4P problem.</p>

INDEX TERMS

The Noncoplanar P4P Problem, rigid transformation, upper bound

CITATION

F.C. Wu, Z.Y. Hu, "A Note on the Number of Solutions of the Noncoplanar P4P Problem",

*IEEE Transactions on Pattern Analysis & Machine Intelligence*, vol. 24, no. , pp. 550-555, April 2002, doi:10.1109/34.993561