The Community for Technology Leaders
Green Image
Issue No. 01 - January (2002 vol. 24)
ISSN: 0162-8828
pp: 139-144
ABSTRACT
<p>A finite subset of ZZ^2 is called a structuring element. A decomposition of a structuring element A is a sequence of subsets of the elementary square (i.e., the 3 x 3 square centered at the origin) such that the Minkowski addition of them is equal to A. Park and Chin developed an algorithm for finding the optimal decomposition of simply connected structuring elements (i.e., 8-connected structuring elements that contain no holes), imposing the restriction that all subsets in this decomposition are also simply connected. In this paper, we show that there exist infinite families of simply connected structuring elements that have decompositions but are not decomposable according to Park and Chin's definition.</p>
INDEX TERMS
Simply connected set, structuring element, decomposition, Minkowski addition.
CITATION

R. F. Hashimoto and J. Barrera, "A Note on Park and Chin's Algorithm," in IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 24, no. , pp. 139-144, 2002.
doi:10.1109/34.982891
94 ms
(Ver 3.3 (11022016))