The Community for Technology Leaders
Green Image
<p><b>Abstract</b>—This paper presents an integrated system for navigation parameter estimation using sequential aerial images, where navigation parameters represent the position and velocity information of an aircraft for autonomous navigation. The proposed integrated system is composed of two parts: relative position estimation and absolute position estimation. Relative position estimation recursively computes the current position of an aircraft by accumulating relative displacement estimates extracted from two successive aerial images. Simple accumulation of parameter values decreases the reliability of the extracted parameter estimates as an aircraftgoes on navigating, resulting in a large position error. Therefore, absolute position estimation is required to compensate for the position error generated in relative position estimation. Absolute position estimation algorithms by image matching and digital elevation model(DEM) matching are presented. In image matching, a robust-oriented Hausdorff measure (ROHM) is employed, whereas in DEM matching the algorithm using multiple image pairs is used. Experiments with four real aerial image sequences show the effectiveness of the proposed integrated position estimation algorithm.</p>
Navigation, aerial image, image matching, digital elevation model (DEM), recovered elevation map (REM), relative position estimation, absolute position estimation, robust-oriented Hausdorff measure.
S.U. Lee, I.-C. Kim, D.-G. Sim, R.-C. Kim, R.-H. Park, "Integrated Position Estimation Using Aerial Image Sequences", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 24, no. , pp. 1-18, January 2002, doi:10.1109/34.982881
95 ms
(Ver 3.3 (11022016))