The Community for Technology Leaders
Green Image
<p><b>Abstract</b>—A cognitively motivated similarity measure is presented and its properties are analyzed with respect to retrieval of similar objects in image databases of silhouettes of 2D objects. To reduce influence of digitization noise, as well as segmentation errors, the shapes are simplified by a novel process of digital curve evolution. To compute our similarity measure, we first establish the best possible correspondence of visual parts (without explicitly computing the visual parts). Then, the similarity between corresponding parts is computed and aggregated. We applied our similarity measure to shape matching of object contours in various image databases and compared it to well-known approaches in the literature. The experimental results justify that our shape matching procedure gives an <it>intuitive</it> shape correspondence and is stable with respect to noise distortions.</p>
Shape representation, shape similarity measure, visual parts, discrete curve evolution.

L. J. Latecki and R. Lakämper, "Shape Similarity Measure Based on Correspondence of Visual Parts," in IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 22, no. , pp. 1185-1190, 2000.
82 ms
(Ver 3.3 (11022016))