The Community for Technology Leaders
Green Image
<p><b>Abstract</b>—We describe a real-time computer vision and machine learning system for modeling and recognizing human behaviors in a visual surveillance task [<ref type="bib" rid="bibI08311">1</ref>]. The system is particularly concerned with detecting when interactions between people occur and classifying the type of interaction. Examples of interesting interaction behaviors include following another person, altering one's path to meet another, and so forth. Our system combines top-down with bottom-up information in a closed feedback loop, with both components employing a statistical Bayesian approach [<ref type="bib" rid="bibI08312">2</ref>]. We propose and compare two different state-based learning architectures, namely, HMMs and CHMMs for modeling behaviors and interactions. The CHMM model is shown to work much more efficiently and accurately. Finally, to deal with the problem of limited training data, a synthetic “Alife-style” training system is used to develop flexible prior models for recognizing human interactions. We demonstrate the ability to use these a priori models to accurately classify real human behaviors and interactions with no additional tuning or training.</p>
Visual surveillance, people detection, tracking, human behavior recognition, Hidden Markov Models.

N. M. Oliver, B. Rosario and A. P. Pentland, "A Bayesian Computer Vision System for Modeling Human Interactions," in IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 22, no. , pp. 831-843, 2000.
93 ms
(Ver 3.3 (11022016))