The Community for Technology Leaders
Green Image
<p><b>Abstract</b>—Determining the rigid transformation relating 2D images to known 3D geometry is a classical problem in photogrammetry and computer vision. Heretofore, the best methods for solving the problem have relied on iterative optimization methods which cannot be proven to converge and/or which do not effectively account for the orthonormal structure of rotation matrices. We show that the pose estimation problem can be formulated as that of minimizing an error metric based on collinearity in object (as opposed to image) space. Using object space collinearity error, we derive an iterative algorithm which directly computes orthogonal rotation matrices and which is globally convergent. Experimentally, we show that the method is computationally efficient, that it is no less accurate than the best currently employed optimization methods, and that it outperforms all tested methods in robustness to outliers.</p>
Pose estimation, absolute orientation, optimization, weak-perspective camera models, numerical optimization.
Gregory D. Hager, Chien-Ping Lu, Eric Mjolsness, "Fast and Globally Convergent Pose Estimation from Video Images", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 22, no. , pp. 610-622, June 2000, doi:10.1109/34.862199
93 ms
(Ver 3.3 (11022016))