The Community for Technology Leaders
Green Image
<p><b>Abstract</b>—Binarization has been difficult for document images with poor contrast, strong noise, complex patterns, and/or variable modalities in gray-scale histograms. We developed a texture feature based thresholding algorithm to address this problem. Our algorithm consists of three steps: 1) Candidate thresholds are produced through iterative use of Otsu's algorithm; 2) Texture features associated with each candidate threshold are extracted from the run-length histogram of the accordingly binarized image; 3) The optimal threshold is selected so that desirable document texture features are preserved. Experiments with 9,000 machine printed address blocks from an unconstrained U.S. mail stream demonstrated that over 99.6 percent of the images were successfully binarized by the new thresholding method, appreciably better than those obtained by typical existing thresholding techniques. Also, a system run with 500 troublesome mail address blocks showed that an 8.1 percent higher character recognition rate was achieved with our algorithm as compared with Otsu's algorithm.</p>
Image processing, document images, thresholding, texture analysis.

Y. Liu and S. N. Srihari, "Document Image Binarization Based on Texture Features," in IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 19, no. , pp. 540-544, 1997.
86 ms
(Ver 3.3 (11022016))