The Community for Technology Leaders
Green Image
Issue No. 11 - November (1996 vol. 18)
ISSN: 0162-8828
pp: 1110-1114
<p><b>Abstract</b>—A Markov random field model with a Gibbs probability distribution (GPD) is proposed for describing particular classes of grayscale images which can be called spatially uniform stochastic textures. The model takes into account only multiple short- and long-range pairwise interactions between the gray levels in the pixels. An effective learning scheme is introduced to recover structure and strength of the interactions using maximal likelihood estimates of the potentials in the GPD as desired parameters. The scheme is based on an analytic initial approximation of the estimates and their subsequent refinement by a stochastic approximation. Experiments in modeling natural textures show the utility of the proposed model.</p>
Texture, Markov/Gibbs random field, pairwise interaction, maximum likelihood estimate.
G.l. Gimel'farb, "Texture Modeling by Multiple Pairwise Pixel Interactions", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 18, no. , pp. 1110-1114, November 1996, doi:10.1109/34.544081
93 ms
(Ver 3.3 (11022016))