The Community for Technology Leaders
Green Image
<p><b>Abstract</b>—An efficient implementation of Reid's multiple hypothesis tracking (MHT) algorithm is presented in which the <it>k</it>-best hypotheses are determined in polynomial time using an algorithm due to Murty[<ref rid="bibi013824" type="bib">24</ref>]. The MHT algorithm is then applied to several motion sequences. The MHT capabilities of track initiation, termination, and continuation are demonstrated together with the latter's capability to provide low level support of temporary occlusion of tracks. Between 50 and 150 corner features are simultaneously tracked in the image plane over a sequence of up to 51 frames. Each corner is tracked using a simple linear Kalman filter and any data association uncertainty is resolved by the MHT. Kalman filter parameter estimation is discussed, and experimental results show that the algorithm is robust to errors in the motion model. An investigation of the performance of the algorithm as a function of look-ahead (tree depth) indicates that high accuracy can be obtained for tree depths as shallow as three. Experimental results suggest that a real-time MHT solution to the motion correspondence problem is possible for certain classes of scenes.</p>
Multiple hypothesis tracking, motion correspondence, data association, tracking, visual tracking, ranked bipartite graph matching.

I. J. Cox and S. L. Hingorani, "An Efficient Implementation of Reid's Multiple Hypothesis Tracking Algorithm and Its Evaluation for the Purpose of Visual Tracking," in IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 18, no. , pp. 138-150, 1996.
94 ms
(Ver 3.3 (11022016))