The Community for Technology Leaders
Green Image
Issue No. 05 - May (1995 vol. 17)
ISSN: 0162-8828
pp: 518-522
<p><it>Abstract</it>—Recent papers have indicated that indexing is a promising approach to fast model-based object recognition because it allows most of the possible matches between sets of image features and sets of model features to be quickly eliminated from consideration. This correspondence describes a system that is capable of indexing using sets of three points undergoing three-dimensional transformations and projection by taking advantage of the probabilistic peaking effect. To be able to index using sets of three points, we must allow false negatives. These are overcome by ensuring that we examine several correct hypotheses. The use of these techniques to speed up the alignment method is described. Results are given on real and synthetic data.</p>
Object recognition, indexing, probabilistic algorithms, probabilistic peaking effect, alignment method.
Clark F. Olson, "Probabilistic Indexing for Object Recognition", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 17, no. , pp. 518-522, May 1995, doi:10.1109/34.391391
587 ms
(Ver 3.3 (11022016))