The Community for Technology Leaders
Green Image
Issue No. 06 - June (1991 vol. 13)
ISSN: 0162-8828
pp: 552-567
<p>The production of robust classifiers by combining supervised training with unsupervised training is discussed. A supervised training phase exploits statistically scene invariant labeled data to produce an initial classifier. This is followed by an unsupervised training phase that exploits clustering properties of unlabeled data. This two-phase process is termed mixed adaptation. A probabilistic model supporting this technique is presented along with examples illustrating mixed adaptation. These examples include the detection of unspecified dotted curves in dotted noise and the detection and classification of vehicles in cinematic sequences of infrared imagery.</p>
pattern recognition; vehicle detection; learning systems; relaxation labelling; classifiers; supervised training; unsupervised training; clustering; probabilistic model; dotted curves; learning systems; pattern recognition; probability
D. Gutfinger, J. Sklansky, "Robust Classifiers by Mixed Adaptation", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 13, no. , pp. 552-567, June 1991, doi:10.1109/34.87342
93 ms
(Ver 3.3 (11022016))