The Community for Technology Leaders
Green Image
Issue No. 05 - May (1987 vol. 9)
ISSN: 0162-8828
pp: 608-620
Richard Hoffman , Department of Electrical Engineering and Computer Science, University of Illinois at Chicago, Chicago, IL 60680.
Anil K. Jain , Department of Computer Science, Michigan State University, East Lansing, MI 48824.
The recognition of objects in three-dimensional space is a desirable capability of a computer vision system. Range images, which directly measure 3-D surface coordinates of a scene, are well suited for this task. In this paper we report a procedure to detect connected planar, convex, and concave surfaces of 3-D objects. This is accomplished in three stages. The first stage segments the range image into ``surface patches'' by a square error criterion clustering algorithm using surface points and associated surface normals. The second stage classifies these patches as planar, convex, or concave based on a non-parametric statistical test for trend, curvature values, and eigenvalue analysis. In the final stage, boundaries between adjacent surface patches are classified as crease or noncrease edges, and this information is used to merge compatible patches to produce reasonable faces of the object(s). This procedure has been successfully applied to a large number of real and synthetic images, four of which we present in this paper.

A. K. Jain and R. Hoffman, "Segmentation and Classification of Range Images," in IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 9, no. , pp. 608-620, 1987.
94 ms
(Ver 3.3 (11022016))