The Community for Technology Leaders
Green Image
Issue No. 06 - June (1986 vol. 8)
ISSN: 0162-8828
pp: 761-766
Baek S. Kim , Department of Medical Information Management, College of Medicine, Hanyang University, 17 Haengdangdong, Seong-dong-ku, Seoul 133, Korea.
Song B. Park , Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, P.O. Box 150, Chongyangni, Seoul 131, Korea.
We propose a fast nearest neighbor finding algorithm, named tentatively an ordered partition, based on the ordered lists of the training samples of each projection axis. The ordered partition contains two properties, one is ordering¿to bound the search region, and the other is partitioning¿to reject the unwanted samples without actual distance computations. It is proved that the proposed algorithm can find k nearest neighbors in a constant expected time. Simulations show that the algorithm is rather distribution free, and only 4.6 distance calculations, on the average, were required to find a nearest neighbor among 10 000 samples drawn from a bivariate normal distribution.

S. B. Park and B. S. Kim, "A Fast k Nearest Neighbor Finding Algorithm Based on the Ordered Partition," in IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 8, no. , pp. 761-766, 1986.
83 ms
(Ver 3.3 (11022016))