The Community for Technology Leaders
Green Image
Issue No. 02 - February (1986 vol. 8)
ISSN: 0162-8828
pp: 164-177
Wolfram H. H. J. Lunscher , Develcon Electronics Limited, Saskatoon, Canada.
Michael P. Beddoes , Department of Electrical Engineering, University of British Columbia, Vancouver, B.C., Canada V6T 1W5.
This paper comments on the optimality of the Laplacian of a Gaussian edge detection filter which localizes edges through zero crossings in the filtered image. The arguments of both Marr and Hildreth, and Dickey and Shanmugam are reviewed to establish that the filter is optimal in the sense of maximizing output image energy near edge features. This filter's principal advantage over other edge detectors is that its response is user-adjustable through selection of a single parameter, the Gaussian standard deviation. However, no clear method for the selection of this parameter has been provided. The problem is addressed here by applying the filter to two ideal periodic edge models blurred by a Gaussian distribution point-spread function. The observed response to the edge spacing and blur standard deviation is then translated into a filter parameter design procedure. The problems of optimum filter performance in the presence of additive Gaussian noise are then addressed. The problem of selecting the sampled filter's coefficient word size is dealt with in a companion paper.

M. P. Beddoes and W. H. Lunscher, "Optimal Edge Detector Design I: Parameter Selection and Noise Effects," in IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 8, no. , pp. 164-177, 1986.
88 ms
(Ver 3.3 (11022016))