The Community for Technology Leaders
Green Image
Issue No. 01 - January (1985 vol. 7)
ISSN: 0162-8828
pp: 107-112
Thomas E. Flick , Department of Electrical Engineering, Purdue University, West Lafayette, IN 47907.
Keinosuke Fukunaga , Department of Electrical Engineering, Purdue University, West Lafayette, IN 47907.
ABSTRACT
By proper design of a nearest-neighbor (NN) rule, it is possible to reduce effects of sample size in NN risk estimation. The 2-NN rule for the two-class problem eliminates the first-order effects of sample size. Since its asymptotic value is exactly half that of the 1-NN rule, it is possible to substitute the 2-NN rule for the 1-NN rule with a resultant increase in accuracy. For further stabilization of the risk estimate with respect to sample size, 2-NN polarization is suggested. Examples are included. The 2-NN approach is extended to M-class and 2k-NN.
INDEX TERMS
CITATION
Thomas E. Flick, Keinosuke Fukunaga, "The 2-NN Rule for More Accurate NN Risk Estimation", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 7, no. , pp. 107-112, January 1985, doi:10.1109/TPAMI.1985.4767625
101 ms
(Ver 3.3 (11022016))