The Community for Technology Leaders
Green Image
Issue No. 06 - June (1984 vol. 6)
ISSN: 0162-8828
pp: 800-809
R. L. Kashyap , School of Electrical Engineering, Purdue University, West Lafayette, IN 47907.
P. M. Lapsa , Department of Electrical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061.
Random field models have arisen in important applications in many diverse fields, including image synthesis and analysis. The automatic description and processing of images is limited by the types of underlying models that are hypothesized for the image. Hence, new random field models and associated techniques are developed. The new class of models includes the traditional simultaneous autoregressive and moving average models, but extends these to comprise a substantially larger new class. Thus, new image textures are representable with convenient small-order parameterizations. In particular, representations with significant correlations between distant locations are achieved. The algorithms for synthesis and estimation, however, require only about the same amount of time as the classical models. The development is facilitated by a new mathematical formulation suitable for problems involving high-dimensional transformations.

R. L. Kashyap and P. M. Lapsa, "Synthesis and Estimation of Random Fields Using Long-Correlation Models," in IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 6, no. , pp. 800-809, 1984.
86 ms
(Ver 3.3 (11022016))