A Resource Allocation Mechanism for Cloud Radio Access Network Based on Cell Differentiation And Integration Concept

Zainab H. Fakhri*, M.Khan*, Firas Sabir, H.S. Al-Raweshidy, Senior Member, IEEE

Abstract—A Self-Organising Cloud Radio Access Network (C-RAN) is proposed, which dynamically adapt to varying capacity demands. The Base Band Units and Remote Radio Heads are scaled semi-statically based on the concept of cell differentiation and integration (CDI) while a dynamic load balancing is formulated as an integer-based optimisation problem with constraints. A Discrete Particle Swarm Optimisation (DPSO) is developed as an Evolutionary Algorithm to solve load balancing optimisation problem. The performance of DPSO is tested based on two problem scenarios and compared to an Exhaustive Search (ES) algorithm. The DPSO deliver optimum performance for small-scale networks and near optimum performance for large-scale networks. The DPSO has less complexity and is much faster than the ES algorithm. Computational results demonstrate significant throughput improvement in a CDI-enabled C-RAN compared to a fixed C-RAN, i.e., an average throughput increase of 45.53% and 42.102%, and a decrease of 23.149% and 20.903% in the average blocked users is experienced for Proportional Fair (PF) and Round Robin (RR) schedulers, respectively. A power model is proposed to estimate the overall power consumption of C-RAN. A decrease of \(\approx 16\% \) is estimated in a CDI-enabled C-RAN when compared to a fixed C-RAN, both serving the same geographical area.

Index Terms—Base Band Unit (BBU), Cloud Radio Access Network (C-RAN), Particle Swarm Optimisation (PSO), Remote Radio Head (RRH), Self-Optimising Network (SON).

1 INTRODUCTION

In the past few years, the proliferation of personal handheld mobile computing devices such as tablets and smartphones, along with the growing volume of data-demanding services and applications, has produced a great need for wireless access and high-speed data transmission. Internet access anywhere and everywhere has triggered the formation of radio hot-spot networks. The major challenge in cellular networks is managing the available resources in a way to achieve 1) Optimum returns on investment, 2) User’s service demands satisfaction, and 3) High levels of network QoS. Unaware of the cell load, a user equipment (UE) associates itself to the cell providing the strongest signal. The spatial distribution of users and their capacity demands vary with respect to time, causing unbalanced traffic loads and wasteful utilisation of network’s resources. Therefore, it is important to self-optimise the network resources dynamically.

To overcome the aforementioned challenges, C-RAN [1]–[3] has been proposed as a novel architecture that can address some significant challenges the Mobile Network Operators (MNOs) are facing with today. C-RAN architecture is composed of three parts: 1) The Base Band Units (BBUs) collected into a virtualised BBU cloud/pool for centralised processing, 2) The Remotely distributed Remote Radio Heads (RRHs) in the radio access network, and 3) An optical transport network (OTN) that connects the BBUs to the RRH. C-RAN can achieve significant cost and energy savings by dynamically scaling the BBUs with respect to changing traffic conditions [4] and adjusting the logical BBU-RRH links using suitable resource allocations schemes. C-RAN with Self-optimising ability can provide MNOs with a flexible network regarding network dimensioning, adaptation to non-uniform traffic, and efficient utilisation of network resources. However, before a full commercial C-RAN deployment, several challenges need to be addressed. Firstly, the front-haul technology used must support enough bandwidth for delivering delay sensitive signals. Secondly, the proper BBU-RRH assignment in C-RAN to not only support collaboration technology like Cooperative Multi-point Processing (CoMP) [5] but also enabling dynamic load balancing and power saving in the network.

The main motivation of this paper is to exploit the capacity routing ability of C-RAN by employing self-optimisation for efficient resource utilisation with high levels of QoS and a balanced network load. Inspired by the concept of cell splitting in biological sciences, a two-stage design is proposed for real-time BBU-RRH mapping and power saving in C-RAN. The main contributions of the proposed scheme is as follows:

1) The proposed mechanism monitors the load on each cell in a given geographical area and divides it into multiple small cells and vice versa if the load in a cell exceeds or falls a certain threshold.

2) The fitting number of BBUs required to serve all RRHs in the given geographical area is assigned based on the actual load on the network. A key challenge of initial BBU-RRH mapping before identifying an optimum BBU-RRH mapping is
also addressed.

3) An Evolutionary Algorithm (EA) is proposed to find the optimum BBU-RRH configuration to balance the network load for enhanced QoS. Therefore, the resources can be utilised efficiently.

This paper is organised as follows: Section 2 presents a survey of related work. Section 3 presents the system model. Section 4 illustrates the formulation for dynamic BBU-RRH allocation problem; Section 5 presents the RRH clustering constraint; Section 6 presents the proposed C-RAN power model; Section 7 defines the CDI algorithm. Computational results are discussed in Section 8. Finally, the paper is concluded in Section 9.

2 RELATED WORK

Artificial Intelligence (AI) techniques facilitate a network to automatically re-configure system parameters for optimum network performance and adaptively learn necessary system parameters to perform upgrades and maintenance routines along with recovering from failures. Since AI, is the basis of self-organising and machine learning network technologies, it can lead to a significant paradigm shift by driving the ongoing efforts in next-generation wireless network (5G) standardisation [6].

Most recent studies on resource management in C-RAN mainly focus on schemes related to RRH-UE mapping and only limited work addresses the BBU-RRH configuration schemes. Some related works on the former schemes are briefly discussed in [7]–[9]. In [7], the authors propose a QoS-aware radio resource optimisation solution for maximising downlink system utility in C-RAN. User grouping, virtual base stations clustering, and beamforming for multiuser, multicell distributed MIMO networks were investigated. In line with this work, the authors of [8] propose an efficient resource allocation scheme in heterogeneous C-RAN. A weighted minimum mean square error (WMMSE) approach is used to solve network-wide beamforming vectors optimisation and identify proper RRH-UE clusters. Moreover, minimising the number of active BBUs is formulated as a bin packing problem for energy saving. The work of [9] expresses a mixed integer non-linear programming (MINLP) problem aiming joint RRH selection to minimise power consumption via beamforming, where the transport network power is determined by the set of active RRHs. Regarding the BBU pool in C-RAN, some studies are described in [10]–[13]. A joint-scheduling strategy for resource allocation in C-RAN is proposed in [14] where the time/frequency resources of multiple base stations are jointly optimised to schedule network users concurrently for network throughput improvement. However, the authors did not consider BBU-RRH mapping and focused mainly on joint scheduling in C-RAN. The authors of [10] initially investigated semi-static and adaptive BBU-RRH switching schemes for C-RAN. The authors of [11] then proposed a lightweight, scalable framework that utilises optimal transmission strategies via BBU-RRH reconfiguration to cater dynamic user traffic profiles. A dynamic BBU-RRH mapping scheme is introduced in [12] using a borrow-and-lend approach in C-RAN. Overloaded BBUs switch their supported RRHs to underutilised BBUs for a balanced network load and enhanced throughput. The authors of [13] propose a load balancing technique which considers load fairness as an optimisation problem. When the load fairness exceeds an alarming threshold, the given geographical area is divided into small compact zones based on an infinite optimisation formulation. The author’s previous work address a blocking probability based load balancing problem in C-RAN via evolutionary algorithms [15]. However, power saving in C-RAN was not addressed.

Regarding other related work, there have been attempts to develop Network Function Virtualisation (NFV) and Software Defined Network (SDN) solutions for C-RAN [16]–[18]. Although SDN and NFV are not the primary focus of this paper, they are presented in this section for a complete introduction of C-RAN. Moreover, an in-depth review of the principles, technologies and applications of C-RAN describing innovative concepts regarding physical layer, resource allocation, and network challenges together with their potential solutions are highlighted in [1], [19].

To sum up, the existing resource allocation mechanisms does not take full advantage of the centralised BBU pool concept in C-RAN. This paper extends the scope of C-RAN by introducing the concept of Cell Differentiation and Integration (CDI) with dynamic BBU-RRH mapping for load balancing and efficient resource utilisation. The system model in this article allows combining self-optimising feature of SON and capacity routing ability of C-RAN for a more centrally managed network operations.

3 SYSTEM MODEL

3.1 Proposed C-RAN Architecture

A self-optimised C-RAN architecture is presented in Fig. 1. The BBUs are decoupled from the RRH and migrated to a centralised BBU-pool, whereas the RRHs are left on the cell sites. A SON controller is introduced inside the BBU cloud which monitors the BBU-pool resource utilisation as well as controlling the switch. Since an optical switch can only support one-to-one switching, soft switching (one-to-one and one-to-many) is enabled indirectly by using optical splitters and multiplexers [11]. The SON controller dynamically assigns BBU pool resources to the independent RRHs based on traffic demands. However, each BBU allocates its radio resources (PRBs) only to the RRHs assigned to it at a particular time.

At extremely low traffic load conditions, only a high power macro-BS serves the given geographical area. As the traffic load increases and the macro cell reaches its load limit, the geographic area is differentiated into C equally sized small cells serving the same coverage area. Each C cell can further differentiate into c more small cells by activating the CDI supporting RRHs deployed to accommodate capacity demands. The actual number of RRHs are determined by the coverage area, users density, and other environment-related factors. However, both C and c are considered to be seven as a reasonable example.

Furthermore, the CDI concept is realised by considering three tiers of RRHs deployment as shown in Fig. 2, i.e., tier-3 RRH deployment imitates a high-power base station serving a Macro cell as in traditional cellular systems.
Tier-2 and tier-1 represents a structure with universal frequency reuse, where each cell is surrounded by a continuous tier of \(6 + E \) and \(6 \times [1 + j] + E \) cells, respectively. Where \(E \) represents the number of other external macro cells and \(j \) accounts for the level of differentiation. A set \(S_i = \{ \text{RRH}_1, \text{RRH}_2, \ldots, \text{RRH}_c \} \) is maintained for each cell \(C_i \) in tier-2 RRH deployment, which contains a group of RRHs responsible for differentiating cell \(C_i \) into \(c \) small cells provided that the sum of transmit powers of all RRHs covers \(C_i \) coverage area. The central RRH of each cell \(C_i \) is represented as \(\text{RRH}_1 \). Where \(i \) represents the cell number in tier-2 RRH structure. The SON server is responsible for cell differentiation and integration with proper BBU-RRH configurations, whereas the optical switch is in charge of realising the settings via server commands. Note that, with small cell deployment in C-RAN, a high inter-cell interference is inevitable. Therefore, a clustering based interference mitigation technique is adopted to avoid network performance degradation. RRHs served by the same BBU are grouped together based on a proximity property [15].

3.2 Channel model

In this paper, Guaranteed Bit Rate (GBR) users with QoS requirements are considered. The frequency reuse factor is 1, and the basic unit of time-frequency resources that can be allocated to users per time slot (0.5 ms) of an LTE subframe is known as the Physical Resource Block (PRB). Each PRB consists of 12 consecutive sub-carriers with a sub-carrier spacing of 15 kHz, corresponding to 0.5 milli-seconds in time domain and 180 kHz in frequency domain. Let \(M \) and \(N \) represent the number of active BBUs and RRHs in the network, respectively, such that \(K_{in} \) represents the total number of users in cell \(i \) served by RRH \(n \). Each user reports Channel Quality Information (CQI) to its serving BBU every two subframes (i.e., 2 milli-seconds) for proper PRB assignment. The channel model considered in this paper is a composite fading channel which involves path-loss and both small and large scale fading, given as:

\[
H_{k_in} = h_{k_in}^* l_{k_in} \left[AD_{k_in}^{-\delta} \right]
\]

where \(h_{k_in}^* \) and \(l_{k_in} \) represent the small and large scale fading channel between the RRH \(n \) and user \(k \) in cell \(i \), respectively. The small scale fading is assumed to be a Rayleigh random variables with a distribution envelop of zero-mean and unity-variance Gaussian process. \(AD_{k_in}^{-\delta} \) reflects the path-loss between RRH \(n \) and user \(k \) in cell \(i \), where \(A \) is a constant which depends on the carrier frequency \(f_c \) and \(D_{k_in} \) is the distance between user \(k \) and RRH \(n \) in cell \(i \) and a path-loss exponent of \(\delta \). In this paper, a path-loss of \((A, \delta) = (1.35 \times 10^7, 3) \) is considered [20]. The large scale fading is assumed to be lognormal random variable with a standard deviation of 10dB and is typically modelled with a probability density function of [21]:

\[
\rho(l) = \frac{\zeta}{\sqrt{2\pi\sigma_l}} \exp\left[-\frac{(\log_{10}l - \mu_l)^2}{2\sigma_l^2}\right]
\]

where \(\zeta = 10/\ln 10 \), and \(\mu_l \) and \(\sigma_l \) are the mean and the standard deviation of \(l \), both expressed in decibels.

The instantaneous Signal-to-Interference-and-Noise-Ratio \(\gamma_{k_in} \) based on CQI received from user \(k \) in cell \(i \) served by RRH \(n \) at time-slot \(t \) is expressed as:

\[
\gamma_{k_in}(t) = \frac{H_{k_in}(t)P_{in}(t)}{N_0 + \sum_{j \in C} \sum_{a \in C, a \neq n} H_{j,a}(t)P_{ja}(t)}
\]

where \(P_{in}(t) \) and \(H_{k_in}(t) \) are the transmit power and channel gain between the serving RRH \(n \) of user \(k \) at time-slot \(t \) in cell \(i \). \(N_0 \) is the power of Additive White Gaussian Noise per PRB and \(\sum_{j \in C} \sum_{a \in C, a \neq n} H_{j,a}(t)P_{ja}(t) \) represents the...
inter-cell interference power received from all other active RRHs \(a \) at time-slot \(t \) in cells \(j \) except the serving RRH \(n \) of user \(k \) in cell \(i \).

Assuming the best modulation coding scheme, the highest data rate achieved by user \(k \) served by RRH\(n \) for a given SINR at time-slot \(t \) can be expressed by Shannon formula:

\[
\vartheta_{k,n}(t) = \log_2(1 + a\gamma_{k,n}(t))
\]

where \(a \) is the constant bit error rate (BER) defined as \(a = -1.5/\ln(5 \times 10^{-6}) \) [22]. The total PRB required by the user can be now be determined by the achievable throughput of the user \(k \) at a given SINR, the demanded data rate \(\vartheta_{k} \) of user \(k \), and the bandwidth \(P_{BW} \) of a single PRB (i.e., 180 KHz) from the following:

\[
N_{RB}^k(t) = \left[\frac{\vartheta_{k}(t)}{P_{BW} \cdot \vartheta_{k,n}(t)} \right]
\]

where \(P_{BW} \) represents the bandwidth of a PRB and the notion \([\cdot] \) is the ceil function.

4 Dynamic BBU-RRH Configuration and Formulation

For a Self-optimising C-RAN architecture shown in Fig. 1, it is essential to balance the network load amongst the active BBUs by proper BBU-RRH configuration. After each CDI cycle, the network may reconfigure itself by scaling the BBUs and RRHs with respect to traffic load. However, during the process, the BBU-RRH mapping might not satisfy the QoS requirement. Therefore, if the BBU-RRH configuration at time \(t \) is known then it is necessary to adjust the BBU-RRH configuration at time \(t+1 \) to adaptively balance the variance in traffic demands. Note that, the time between \(t \) and \(t+1 \) is longer than that of a subframe (i.e., one millisecond) and is called the load balancing cycle.

A user location indicator vector \(u = \{u_1, u_2, ..., u_K\} \) is defined which shows users association with RRHs such that \(u_k = \{r_{in}|r_{in} \in Z^+: i, n \in 1, 2, 3, ..., C\} \), where \(u_k = r_{in} \) if user \(k \) is associated with RRH\(n \) of cell \(C_i \). To indicate RRHs association with BBUs, a vector \(r = \{r_{11}, r_{12}, ..., r_{1n}\} \) is defined, where \(r_{in} \in \{1, 2, ..., M\} \) and \(r_{in} = m \) indicates RRH\(n \) of cell \(C_i \) is being served by BBU\(m \). Whereas, \(r_{in} = 0 \) indicates that RRH\(n \) of cell \(C_i \) is not active. If the user location indicator vector \(u \) is given, then the problem is to identify the new RRH allocation vector \(r \).

4.1 Number of BBUs required in the network

The required number of BBUs to serve the offered traffic load at a particular time \(t \) can be calculated using actual load \(\eta(t) \) on the network. Let \(\eta_m(t) \) be the load on BBU\(m \) at time period \(t \), which is represented as

\[
\eta_m(t) = \sum_{k=1}^{K} I_{m,k}(t)N_{RB}^k(t)
\]

Where \(I_{m,k} \) is a binary indicator such that \(I_{m,k} = 1 \) if user \(k \) is served by BBU\(m \). However, an important constraint \(\sum_{m=1}^{M} I_{m,k} = 1, \forall k \) defines that each user \(k \) is served by only one BBU at time period \(t \). Note that, all BBUs are assigned the same number of PRBs \((P_{RB}) \). Another important constraint is that \(\sum_{k=1}^{K} I_{m,k}(t)N_{RB}^k(t) \leq P_{RB}, \forall m \), which states that the number of PRBs assigned to users served by the same BBU should not exceed the BBU PRB limitation.

The total load on the network at time \(t \) is represented as the aggregated load on each active BBU at time \(t \), which is given by

\[
\eta(t) = \sum_{m=1}^{M} \eta_m(t)
\]

Now the number of required BBUs (\(M \)) in the network at a particular time \(t \) can be given as:

\[
\text{No. of BBUs} = M = \begin{cases} \left\lceil \frac{\eta(t)}{M_{\text{total}}} \right\rceil & \text{if } \eta(t) < M_{\text{total}} \\ \left\lfloor \frac{\eta(t)}{M_{\text{total}}} \right\rfloor & \text{if } \eta(t) \geq M_{\text{total}} \end{cases}
\]

where \(M_{\text{total}} \) is the total number of BBUs available in the BBU pool and the notation \(\left\lfloor . \right\rfloor \) is the ceil function. Moreover, the load contributed by an active RRH\(n \) of cell \(i \) in the network is given by

\[
\eta_{BBU,n}(t) = \sum_{k=1}^{K} I_{k,n}(t)N_{RB}^k(t)
\]

Network performance determined by Key Performance Indicators (KPIs). Based on these KPIs, the SON server identifies optimum BBU-RRH configuration by utilising the existing number of active BBUs and RRHs, to achieve a highly stable network with highest achievable QoS with respect to load demand. Following are the important KPIs considered for BBU-RRH mapping problem:

4.2 Key Performance Indicator for Load Fairness Index

In this paper, a Jains fairness index \(\psi \) is monitored, which determines the level of load balancing in the network at a particular time \(t \) and is defined as:

\[
\psi(t) = \frac{\left(\sum_{m=1}^{M} \eta_m(t) \right)^2}{M \left(\sum_{m=1}^{M} \eta_m(t)^2 \right)}
\]

where \(M \) is the number of active BBUs. The range of \(\psi \) is in the interval \([\frac{1}{M}, 1] \), with a higher value representing a highly balanced load distribution amongst all active BBUs. Therefore, maximising \(\psi \) is one of the objectives to achieve a highly balanced load in the C-RAN.

4.3 Key Performance Indicator for Average Network Load

Minimising the average network load can avoid handovers of users with poor channel conditions in the system. A user(s) associated to an RRHs may have imperfect channel conditions with more PRBs requirement to meet desired data rate. Failure to meet the user’s PRB demand, the BBU has to perform a handover operation. Therefore, to avoid unnecessary handovers, minimising the average network load is considered as a second objective and is given as

\[
\eta_{ave}(t) = \frac{\sum_{m=1}^{M} \eta_m(t)}{M}
\]

where \(\eta_m(t) \) is the load on a BBU\(m \) defined in (6) and \(M \) is number of active BBUs calculated from (8).
4.4 Key Performance Indicator for Handovers

Network transition to a new BBU-RRH configuration may require significant forced handovers. An increased number of forced handovers in the system is undesirable and leads to performance degradation. Allocating an RRH to a new BBU at a particular time results in forced handovers of all users associated with the RRH. Since inter-BBU handovers not only involves BBUs but a signalling overhead between the Serving Gateway (S-GW) and Mobility Management Entity (MME). Therefore, it is desirable to achieve a new optimum BBU-RRH configuration with a minimum required handovers. A handover index $h(t)$ is monitored as a third objective for load balancing problem and is given as:

$$ h(t) = \frac{1}{2} \left(\sum_{m=1}^{M} \sum_{k=1}^{K} \left| I_{m,k}(t) - I_{m,k}^0(t) \right| \right) $$

(12)

where $I_{m,k}(t)$ is a binary variable that indicates a user’s association to BBU in previous BBU-RRH configuration i.e., $I_{m,k}(t)=1$, if user k is served by BBU$_m$ in previous BBU-RRH configuration.

6 POWER MODEL FOR C-RAN

This section explains the necessary aspects needed to assess the power consumption of C-RAN. However, a more detailed description of the components involved in a C-RAN power model is given in [24]. The three most important parts considered for the power model are described as follows.

6.1 BBU Power estimation model

The BBU performs a different set of functions (I_{bbu}) which includes scheduling of PRBs, Forward error correction, FFT and OFDM specific processing, filtering, modulation/demodulation, and transport link related functions, etc. These features can be measured in Giga Operations per Second (GOPS) and then translated into power figures. About 40 GOPS per Watt is estimated as the power cost of a large BBU [25]. The power model for the BBU can be given as:

$$ P_{bbu} = \sum_{i \in I_{bbu}} P^{ref}_{i,bbu} A^x_i W^{x_i^m} $$

(15)

where $P^{ref}_{i,bbu}$ in Watts represents the power consumption of BBU with respect to BBU functions. A is the number of antenna chains/RF transceivers with x^A scaling exponent. W is the bandwidth share used in transmission with a scaling exponent x^m_i. In [26], the authors model BBU operations with exact scaling components and reference values to calculate BBU power consumption, shown in Table.1.

6.2 RRH power estimation model

An RRH consist antenna chains/ RF transceivers, each with its own power amplifier (PA). The PA is main element of consideration as it consumes most of the power within an RRH. The power consumption of a PA is affected by its power efficiency (η_P). The power consumed by the PA can be given as $P_{PA} = \frac{P_{out}}{\eta_P}$, where P_{out} is the output power of the PA, which depends on the bandwidth share (χ), i.e., the actual number of physical resource blocks (N_{RB}) used for transmission and the output power of the antenna $P_{out} (P_{TX} = P_{out} \chi)$. σ_{feed} represents the feeder loss. Moreover, the RF transceiver units of an RRH are responsible for functions like signal modulation/demodulation, voltage controlled oscillation and mixing, AC-DC and DC-AC conversions,
and low noise, gain amplification. The power consumed by an RRH can be modelled as:

\[P_{\text{RRH}} = \sum_{a=1}^{A} (P_{PA} + P_{RF}) \]

where \(a \in \{1, ..., A\} \) denotes the number of antenna/RF chains.

6.3 Optical transceiver power estimation model

In C-RAN architecture, the *front-haul* connectivity with high bandwidth, low cost, and low latency requirements for transport networks is challenging. Several factors influence the operation of optical transceivers such as the technology used, the operating conditions, and the output power required, which in turn affect the power consumption. From a power consumption perspective, the optical transceivers can be divided into two modules. The optical transmitter module, in which the OFDM electrical signals are modulated over optical carriers using an external or direct modulated lasers. And a receiver module which detects the optical OFDM signals either by direct detection or coherent detection. The power consumption of the optical transceiver as described in [27] can be given as:

\[P_{\text{TRANS}} = (P_{\text{laser}} + P_{\text{driver}} + P_{I/O})_{\text{TX}} + (P_{PD} + P_{\text{amp}} + P_{I/O})_{\text{RX}} \]

where \(P_{\text{laser}}, P_{\text{driver}}, P_{I/O}, P_{PD}, \) and \(P_{\text{amp}} \) are the powers consumed by direct-modulated laser, electronics driving the laser, the electrical input/output interface, photodetector, and the trans-impedance and limiting amplifiers. This paper consider a point-to-point (PtP) transceivers rather than point-to-multipoint, because the PtP link loss is driven by distance and used operating wavelength only, i.e., the link loss of PtP is as low as 6dB with a 20 km network reach [28].

The total power consumption of a C-RAN (\(P_{\text{C-RAN}} \)) can be estimated by summing the power consumed by main parts of the network with power consumed by other components \(P_{\text{others}} \) such as power conversions(AC-DC, DC-DC) and cooling, i.e.,

\[P_{\text{C-RAN}} = \sum (P_{\text{BBU}} + P_{\text{TRANS}}) + \sum (P_{\text{RRH}} + P_{\text{TRANS}}) + P_{\text{others}} \]

Where \(P_{\text{TRANS}} \) and \(P_{\text{TRANS}} \) indicates the power consumption of PtP transceivers located at each BBU and RRH, respectively. According to [29], base stations with a total power consumption \(\leq 500 \) Watts do not require a cooling system. This can be applied to RRH in C-RAN if its components (i.e., PA, RF, and optical transceiver) require an overall power less than 500 Watts. In this paper, the cooling power for RRH is ignored considering supply power as the only overhead.

From [24], the supply power required for a base station can be estimated as an affine function of transmitting power. The power consumption can be expressed by a load-dependant part that linearly increases with a power gradient (slope) \(\Delta p \) and a static load independent part \(P_{\text{static}} \) as shown in Fig. 3. Moreover, the supply power reaches a maximum \(P_1 \) when the transmitting power reaches the maximum limit \(P_{\text{max}} \). A base station may enter an idle mode (sleep mode), with minimum power consumption (\(P_{\text{sleep}} \)) when it is not transmitting. The total supply power for a base station can be formulated as:

\[P_{\text{supply}}(\chi) = \begin{cases} P_1 + \Delta p \chi P_{\text{max}} \chi - 1 & \text{if } 0 < \chi \leq 1 \\ P_{\text{sleep}} & \text{if } \chi = 0 \end{cases} \]

where \(P_1 = P_{\text{static}} + \Delta p P_{\text{max}} \) and \(\chi \) is a scaling parameter which indicates the bandwidth share, i.e., \(\chi = 1 \) indicates that the system is transmitting with full power and bandwidth whereas \(\chi = 0 \) represents an idle system. The basic power model presented in (19) is parameterised to understand the contribution of different parameters. Parameters which are assumed to be constant or having negligible effects are also highlighted. The following approximations are made:

- Both the BBU and Radio Frequency (RF) power consumption, linearly scales with the number of Antennas (A) and bandwidth (W), i.e., \(P_{\text{BBU}} = A(W_{\text{TOTAL}}) P_{\text{pm}} \) and \(P_{\text{RF}} = A(W_{\text{TOTAL}}) P_{\text{pm}} \). Where \(P_{\text{pm}} \) and \(P_{\text{pm}} \) are parameterised power consumption of BBU and RF, respectively.
- Each antenna unit of an RRH has a power amplifier (PA). The power consumed by a PA depends on the maximum power transmission per antenna unit (\(P_{\text{pm}} \)) and its efficiency (\(\eta_{\text{PA}} \)). Losses between the antenna and PA are known as feeder losses (\(\sigma_{\text{feeder}} \)) which may be ignored since PAs are placed close to the antennas [30].
- The loss factors of DC-DC, AC-DC conversions, main supply units (MS), and cooling power consumption for the BBU pool are approximated by \(\sigma_{\text{DC-POOL}}, \sigma_{\text{AC-POOL}} \), and \(\sigma_{\text{COOL-POOL}} \). Whereas for the RRHs, the loss factors are approximated by \(\sigma_{\text{DC-RRH}} \) and \(\sigma_{\text{AC-RRH}} \). Moreover, the optical fibre losses between BBUs and RRHs are approximated by a loss factor \(\sigma_{\text{optical}} \).

Table 1

BBU operations and their scaling values with transmit antennas and bandwidth

<table>
<thead>
<tr>
<th>Processing type, (i)</th>
<th>GOPS</th>
<th>(P^{\text{ref}}_{\text{BBU}}) [W]</th>
<th>(x_i^1)</th>
<th>(x_i^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Domain Processing</td>
<td>360</td>
<td>9.0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Frequency Domain Processing</td>
<td>60</td>
<td>1.5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Forward Error Correction</td>
<td>60</td>
<td>1.5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Central Processing Unit</td>
<td>400</td>
<td>10.0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Common Public Radio Interface</td>
<td>300</td>
<td>7.5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Leakage</td>
<td>118</td>
<td>3.0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
If the power consumed by a single BBU serving a single RRH is:

\[P_1 = P_{BBU} + P_{RRH} \]

(20)

\[P_1 = \frac{A(W_{BBU})}{1 - \sigma_{DC,POOL}^{BBU}} P_{BBU} + P_{TRANS} + \frac{A(W_{BBU})}{1 - \sigma_{DC,POOL}^{RRH}} P_{RRH} + (P_{max}/A.P_{opt}) + P_{TRANS} \]

(21)

Then the total power consumed by all active BBUs and RRHs in a C-RAN network can be modelled as

\[P_{supply} = \sum_{m=1}^{M} \left(P_{BBU} + \sum_{n \in Z_m} P_{RRH} \right) \]

(22)

where \(M \) represents the number of active BBUs in the network and \(Z_m \) represents the list of RRHs handled by BBU \(m \).

7 Cell Differentiation and Integration (CDI) Algorithm

According to the intuitive analysis above, a CDI algorithm is proposed in this section and Fig. 4. Network information is collected in the first step and analysed for proper cell differentiation and integration. The algorithm seeks to utilise the network resources efficiently by calculating the necessary number of BBUs and RRHs to serve capacity demands at the end of each CDI cycle. Apart from a single BBU required to serve load requirements, proper BBU-RRH configuration is adjusted at the end of optimisation step by comparing the analysed and optimised QoS values. Note that, the CDI algorithm triggers Algorithm 1 and Algorithm 2 sequentially, i.e., Algorithm 2 is triggered immediately after the Algorithm 1 is executed. In the interest of simplicity and understanding, the CDI algorithm is divided into separate pseudo-codes.

7.1 Discrete Particle Swarm Optimisation (DPSO)

PSO utilises a population (or swarm) of particles, where each individual particle represents a solution [31], namely BBU-RRH association vector \(r \) defining the BBU-RRH configuration. The QoS represented in (14) is considered as the main objective function, PSO seeks to maximise the QoS function by finding the best solution vector \(\{ r_1, r_2, \ldots, r_n \} \). PSO utilises a group of particles (or solutions) to probe the solution space in a random way with different velocities. To direct the particles to their best fitness values, the velocity of each particle is changed stochastically at each iteration. The velocity update of each particle \(j \) depends on the historical best position experience (pbest) of the particle itself and the best location experience of neighbouring particles i.e., the global best position (gbest) [32] and is given as

\[v_j^t = w v_j^{t-1} + c_1 \varepsilon_1 (pbest_j^t - x_j^t) + c_2 \varepsilon_2 (gbest_j^t - x_j^t) \]

\[1 \leq j \leq |\Delta| \]

(25)

where \(\Delta \) represents the population (or swarm) of particles and \(I \) represents the Iteration number. \(x_j^1 \) is the current position of particle \(j \) in iteration \(I \) and \(\varepsilon_1, \varepsilon_2 \) are random numbers between 0 and 1. Both \(c_1 \) and \(c_2 \) are acceleration coefficients.
Algorithm 1: Pseudo-code for Semi-static Cell Differentiation

Input: Current network load $\eta(t)$ from (7)

- BBU-RRH mapping vector r

Required number of BBUs from (8)

1. **if** No. of active BBUs $= 1$ **then**
 2. **if** $\eta(t) \geq |P_{\text{all}}|$ **then**
 3. - Activate required No. of BBUs
 4. - Differentiate cell into tier-2 RRH structure by BBU-RRH mapping using Algorithm 4
 5. - Update BBU-RRH mapping vector r
 6. **for** $i=1$ to C **do**
 7. - Select set S_i
 8. - Compute $\eta_{R_{BH1}}(t)$ from (9)
 9. **if** $\eta_{R_{BH1}}(t) > |P_{\text{all}}|$ **then**
 10. - $R \leftarrow S_i \{\text{Add } S_i \text{ to } R\}$
 11. - Differentiate cell C_i by activating all RRHs in S_i, an map them to BBUs according to Algorithm 4.
 12. - Update BBU-RRH mapping vector r
 13. **end**
 14. **end**
 15. **else**
 16. - No cell differentiation required.
 17. - Tier-3 RRH structure remains.
 18. **end**
 19. **else**
 20. **if** No. of active BBUs \leq No. of required BBUs **then**
 21. **if** All possible RRHs deployed in the network are active **then**
 22. - Activate the required No. of BBUs.
 23. - Cells can not be differentiated further.
 24. - Update BBU-RRH mapping vector r
 25. **else**
 26. - Activate required number of BBUs
 27. **for** $i=1$ to C **do**
 28. - Select set S_i
 29. - Compute $\eta_{R_{BH1}}(t)$ from (9)
 30. **if** $\eta_{R_{BH1}}(t) > |P_{\text{all}}|$ **then**
 31. - $R \leftarrow S_i \{\text{Add } S_i \text{ to } R\}$
 32. - Differentiate cell C_i, further to tier-1 RRH structure by mapping newly activated RRHs to active BBUs using Algorithm 4
 33. - Update BBU-RRH mapping vector r
 34. **end**
 35. **end**
 36. **end**
 37. **end**

Algorithm 2: Pseudo-code for Semi-static Cell Integration

Input: Current network load $\eta(t)$ from (7)

- BBU-RRH mapping vector r

Required number of BBUs from (8)

1. **if** No. of active BBUs $= 1$ **then**
 2. - No cell integration required.
 3. - A high-power BS serves the geographical area.
 else
 4. **if** No. of required BBUs $= 1$ **then**
 5. - Integrate all cells into tier-3 RRH structure, i.e., a high power BS should serve the geographical area.
 6. - Switch-off remaining BBUs.
 7. - Update BBU-RRH mapping vector r.
 8. **else**
 9. **for** $i=1$ to C **do**
 10. - Select set S_i
 11. **for** $j=1$ to end of S_i **do**
 12. - Compute load $\eta_{R_{BH1}}(t)$ from (9)
 13. - Sum $= \sum + \eta_{R_{BH1}}(t)$
 14. **end**
 15. **if** $\text{Sum} \leq P_{\text{BB}}$ **then**
 16. - Integrate all cells by switching-off all RRHs in set S_i, except RRH$_{11}$.
 17. - Offload RRHs to required number of BBUs according to Algorithm 5.
 18. - Update BBU-RRH mapping vector r.
 19. **end**
 20. **end**
 21. - Run Algorithm 5
 22. {Case of BBU reduction and no integration}
 23. **end**
 24. **end**

8 Computational Results and Analysis

To make the simulation more realistic, the user arrivals in Fig. 6 follows a Poisson process with rate λ. However, due to the dynamic spatial and temporal nature of user traffic, the user arrival is modelled as a time-inhomogeneous process. This is achieved by multiplying the time-homogeneous Poisson process with traffic intensity parameter λ and the rate function $f(t)$ shown in Fig. 5. The rate function is unit-less and reshapes the traffic from constant intensity to an analogous time varying profile that reflects typical traffic patterns in a real cellular network. If users arrive in the system following a Poisson process with intensity λ
where χ_t the number of users at time t users/min, with a constant service time of h (60 sec), then the number of users at time t is calculated as $K(t) = \chi h f(t)$. Where $\chi \sim \text{Poiss}(\lambda)$ is a random variable with mean λ (i.e., $\lambda = 200$). Moreover, different data rate requirements are assumed for end users based on 3GPP standard simulation parameters [34] i.e., 4-25 kbps for audio, 32-384 kbps for video, 28.8 kbps for data, and 60 kbps for real-time gaming services. Based on uniform user distribution and network parameters [34] i.e., 4-25 kbps for audio, 32-384 kbps for video, 28.8 kbps for data, and 60 kbps for real-time gaming services.

The BBU-RRH association vector $r = \{r_{11}, r_{12}, ..., r_{in}\}$ is maintained and updated after each CDI cycle. Newly activated RRHs and BBUs in the network are mapped according to Algorithm 4 and 5. In this paper, a maximum of 49 RRHs and 5 BBUs are deployed in the network to support semi-static cell differentiation and integration. The initial BBU-RRH mapping at the beginning of a CDI cycle might degrade the network QoS. Therefore, dynamic BBU-RRH mapping is proposed to identify proper BBU-RRH mapping.

Before going to a more thorough analysis of the proposed CDI concept, the efficiency of DPSO over two different problem scenarios, P_1, P_2, and compared with Exhaustive Search (ES) algorithm. Both scenarios consists of 5 active BBUs with 19 active RRHs including two differentiated cells (Tier 1, level 2, RRH structure) for P_1, and 49 active RRHs (Tier 1, level 7, RRH structure) for P_2, respectively. The aim is to analyse DPSO performance for small and large networks. User distribution within each cell is uniform where 6 and 25 users are considered for non-dense and high dense cells, respectively.

For Monte Carlo analysis, the DPSO and ES algorithms are repeated 50 times with different initial BBU-RRH settings for each problem and results obtained are averaged. The load fairness index, averaged network load, and handover index are represented in Figs. 9, 10 and 11, respectively, over 200 iterations for both P_1 and P_2. The optimum values shown in the figures and Table.2, are achieved by exhaustively searching for all possible solutions N^M using ES algorithm, which helps in demonstrating the improvement in each iteration of the DPSO algorithm. Note that, ES algorithm is independent of iterations.

Fig. 8 shows that the DPSO algorithm converges to the optimum solution in P_1 with a Convergence Rate (CR) of

![Fig. 5. Rate function for time in-homogeneous user arrivals](image)

![Fig. 6. Actual network load with respect to time](image)
is achieved after only 176 iterations and $176 \times |\Delta|$ fitness evaluations, which is 99.57% of the optimum value found by ES algorithm. ES algorithm performs 5^{10} fitness evaluations to find the optimum value which is a considerable amount of fitness evaluations.

Fig. 9. Load fairness index values for DPSO and ES.

Figs 10 and 11 displays the convergence of DPSO algorithm to the optimum value for average load value and handover index in both P1 and P2. In P1, optimum are achieved after 12 and 38 iterations for average network load and handovers, respectively. For P2, the DPSO algorithm could not find the optimum value over 200 iterations. However, the best possible value achieved for average network load and handover index are 98% and 99.01% of the optimum value found by ES algorithm, respectively. ES algorithm determines the optimum value after performing 5^{10} enormous fitness evaluations whereas the DPSO algorithm performs $67 \times |\Delta|$ and $145 \times |\Delta|$ to find the best value for average network load and handover index, respectively. Note that, the α and β control parameters in (14) are selected by performing an exhaustive search (ES) algorithm to identify the optimal BBU-RRH setting for P_1. Both α and β values are orderly set to $0, 0.1, \ldots, 1$ with a constraint $\alpha + \beta \leq 1$ as shown in Fig. 12. An optimal BBU-RRH setting is found using ES algorithm for each pair of α and β. It is observed that setting a higher value for load fairness index (until $\alpha = 0.8$) not only reduces the resource shortage but also improves network balance. Setting values for $\alpha > 0.8$ results into improper BBU-RRH mapping which implies that maximising network load balance is overly considered compared to minimising average network load and handovers, resulting into an increased resource shortage. This paper considers $\alpha = 0.8$ and $\beta = 0.1$ which means assigning a 10% weight to handover minimisation.

For a more thorough analysis, the proposed CDI concept is compared to a fixed C-RAN scenario (F-CRAN). The BBU cloud holds five BBUs in both cases. However, the fixed C-RAN scenario does not support cell differentiation or integration, and only 7 RRHs serves the entire macrocell coverage area. The dynamic BBU-RRH mapping is enabled in the fixed C-RAN scenario which shows 5^{10} possible BBU-RRH mapping solutions to choose from at the beginning of each CDI cycle. The number of possible BBU-RRH mapping solutions for CDI scenario at the start of each CDI cycle

Fig. 10. Convergence of DPSO algorithm.

Fig. 11. Convergence of ES algorithm.

Fig. 8. QoS values for DPSO and ES

Fig. 7. Number of active BBUs and RRHs with respect to network load/time

| TABLE 2 |
|-----------------|-----------------|-----------------|
| Quality of Service | P_1 (19 RRH) | P_2 (49 RRH) |
| DPSO | 0.599142 | 0.599142 |
| ES | 0.3887970793 | 0.592940793 |
| Load Fairness Index | P_1 (19 RRH) | P_2 (49 RRH) |
| DPSO | 0.984797 | 0.97168 |
| ES | 0.972397 | 0.97556 |
| Average Network Load | P_1 (19 RRH) | P_2 (49 RRH) |
| DPSO | 1.506 | 1.4962 |
| ES | 1.506 | 1.4663 |
| Handover Index | P_1 (19 RRH) | P_2 (49 RRH) |
| DPSO | 0.38095 | 0.38748 |
| ES | 0.38095 | 0.38369 |

0.825. Where CR is defined as the number of times, the DPSO finds a best or optimum solution during the entire number of iterations. This implies that over 200 iterations, the optimum solution is achieved 165 times for P_1. For P_2, the CR of DPSO algorithm is 0.12. However, the optimum solution is not reached over 200 generations. DPSO algorithm achieves the best value 24 times i.e., after 176 iterations and $176 \times |\Delta|$ fitness evaluations, which is still 99.53% of the optimum value achieved by ES algorithm after an enormous 5^{10} fitness evaluations.
The simulation results demonstrate the advantage of using CDI-enabled C-RAN (CDI-CRAN) instead of a F-CRAN setting. When a fixed C-RAN is considered, the average blocked users in the network are much higher with significantly lower average throughput, using any scheduling technique, as shown in Figs 13 and 14, provided that the dynamic BBU-RRH mapping is also enabled. However, an interesting observation is the significant drop in the averaged blocked users and the necessary increase in average network throughput in CDI-CRAN compared to F-CRAN. This indicates that during cell differentiation, an overloaded cell divides into multiple small cells, and not only reduces the user to RRH distances but also the PRB demands resulting from high SINR and low path loss values. A further decrease in average network load is observed after proper BBU-RRH mapping, providing a balanced network load across the active BBUs. Note that,

Algorithm 4: Initial RRH association to active BBUs during cell differentiation.

Input: List A of newly activated BBUs, List R containing sets of RRHs supporting cell differentiation

1. if A is not empty then
 2. for $m=1$ to No. of active BBUs do
 3. - Compute $\eta_m(t)$ from (6)
 4. if $\eta_m(t) \leq$ lower limit then
 5. $A \leftarrow$ BBU$_m$ \{Add BBU$_m$ to List A\}
 6. end
 7. end
 8. end
9. while not the end of List R do
 10. - Select I^h set from list R
 11. $m = 1$
 12. for $j=1$ to end of set S_i do
 13. - If $m > |A|$ then
 14. $m = 1$
 15. end
 16. BBU$_m$ \{RRH_{ij} Map RRH$_{ij}$ to BBU$_m$ except R_{ij}\} \{Add BBU$_m$ to A\}
 17. $m = m + 1$
 18. end
 19. I=I+1;
20. end
21. else
22. for $m=1$ to No. of active BBUs do
 23. - Compute $\eta_m(t)$ from (6)
 24. if lower limit $\leq \eta_m(t) \leq$ Upper limit then
 25. $A \leftarrow$ BBU$_m$ \{Add BBU$_m$ to A\}
 26. end
 27. end
 28. if A is still empty then
 29. $A \leftarrow$ All active BBUs
 30. end
31. - Sort A in increasing order of BBU loads
32. I=1;
33. while not the end of List R do
 34. - Select I^h set from List R
 35. $m = 1$
 36. for $j=1$ to end of set S_i do
 37. - If $m > |A|$ then
 38. $m = 1$
 39. end
 40. BBU$_m$ \{RRH_{ij} Map RRH$_{ij}$ to BBU$_m$ except R_{ij}\}
 41. end
 42. I=I+1;
43. end
cell differentiation increases the number of RRH interferers in the network. However, RRHs served by the same BBU does not contribute to the overall interference experienced by users served by the same BBU.

From the results shown in Fig. 14, it is observed that the average network throughput increases by 45.53% in the CDI-CRAN compared to F-CRAN, both enabled with PF schedulers. Whereas with RR schedulers, an increase of 42.102% is observed. Moreover, the average throughput difference between initial and optimum BBURR mapping in a CDI-enabled C-RAN, with PF and RR scheduling is 4.0219% and 4.126%, respectively. This indicates efficient resource utilisation during cell differentiation and integration, ensuring minimum blocked users until a proper BBU-RRH setting is identified. Note that, the initial BBU-RRH mapping supported by Algorithm 4 and 5, is an important consideration in the overall CDI concept (as explained earlier). About 23.149% reduction in the average number of blocked users with PF scheduler and 20.903% with RR is observed in Fig. 13. Moreover, the average resource shortage drastically decreases in the CDI-CRAN, compared to fixed C-RAN as shown in Table 3 provided that both scenarios have an equal amount of resources available (i.e., 5 BBUs, 5×10 PRBs). A 76.57% decrease in average PRB shortage is estimated with CDI-CRAN compared to F-CRAN.

Fig. 15 shows the average power consumed by the C-RAN network for both CDI and fixed setting for different schedulers. Despite the fact that the geographical area is served with more RRHs in CDI-CRAN, the total power consumed by the network is still lower. An average de-
techniques are applied in this work. Note that, the path-

compared to fixed C-RAN regarding coverage performances

Fig. 16 shows the SINR thresholds versus the probability of

Fig. 14. Average network throughput for fixed and CDI-enabled C-RAN.

consumption is estimated in the CDI-CRAN with PF and RR

Fig. 15. Average power consumed by fixed and CDI-enabled C-RAN.

schedulers, respectively, compared to a fixed C-RAN setting.

average blocked users and 76.57% reduction in average

for the same geographic area is still higher by

number of RRHs (49) in a given geographical area for CDI

RAN is proposed to estimate the overall network power

self-organised C-RAN. Moreover, the power model for C-

behaviour for SINR thresholds within the range of 0dB to

results based on Monte Carlo analysis shows an average

throughput increase of 45.53% with 23.149% decrease in

it is noticed that despite deploying a higher

6dB for both cases.

average blocked users and 76.57% reduction in average

throughput increase of 45.53% with 23.149% decrease in

average blocked users and 76.57% reduction in average

resource (PRBs) shortage. The CDI algorithm hosts a DPSO

algorithm which is developed to find optimum BBU-RRH

CDI algorithm hosts a DPSO algorithm which is developed to find optimum BBU-RRH

configuration dynamically. The performance of DPSO is

tested and compared to ES. Using two benchmark problems,

the DPSO delivered noticeably faster convergence compared
to ES, which makes the CDI algorithm more reliable for a

self-organised C-RAN. Moreover, the power model for C-

RAN is proposed to estimate the overall network power

consumption. It is noticed that despite deploying a higher

number of RRHs (49) in a given geographical area for CDI

enabled C-RAN, the power consumption of a fixed C-RAN

for the same geographic area is still higher by ≈ 15.28% and

16.02% for PF and RR schedulers, respectively.

Fig. 16. Probability of coverage versus SINR threshold

not identical, the probability of coverage still has a linear

behaviour for SINR thresholds within the range of 0dB to

5dB for both cases.

9 CONCLUSION

The concept of cell differentiation and integration in C-RAN

is examined with an objective to utilise network resources

efficiently without degrading the overall network QoS. An

energy efficient C-RAN network is considered to accommodate traffic by scaling the BBU and RRHs as well as maintaining a balanced network via proper BBU-RRH mapping, formulated as a constrained integer programming problem. A CDI algorithm is developed for C-RAN and tested for comparison with a fixed C-RAN setting. Computational results based on Monte Carlo analysis shows an average throughput increase of 45.53% with 23.149% decrease in average blocked users and 76.57% reduction in average resource (PRBs) shortage. The CDI algorithm hosts a DPSO algorithm which is developed to find optimum BBU-RRH configuration dynamically. The performance of DPSO is tested and compared to ES. Using two benchmark problems, the DPSO delivered noticeably faster convergence compared to ES, which makes the CDI algorithm more reliable for a self-organised C-RAN. Moreover, the power model for C-RAN is proposed to estimate the overall network power consumption. It is noticed that despite deploying a higher number of RRHs (49) in a given geographical area for CDI enabled C-RAN, the power consumption of a fixed C-RAN for the same geographic area is still higher by ≈ 15.28% and 16.02% for PF and RR schedulers, respectively.

REFERENCES

