The Community for Technology Leaders
Green Image
Issue No. 05 - May (2014 vol. 13)
ISSN: 1536-1233
pp: 948-963
Manuel Fogue , Univ. of Zaragoza, Teruel, Spain
Piedad Garrido , Univ. of Zaragoza, Teruel, Spain
Francisco J. Martinez , Univ. of Zaragoza, Teruel, Spain
Juan-Carlos Cano , Univ. Politec. de Valencia, Valencia, Spain
Carlos T. Calafate , Univ. Politec. de Valencia, Valencia, Spain
Pietro Manzoni , Univ. Politec. de Valencia, Valencia, Spain
New communication technologies integrated into modern vehicles offer an opportunity for better assistance to people injured in traffic accidents. Recent studies show how communication capabilities should be supported by artificial intelligence systems capable of automating many of the decisions to be taken by emergency services, thereby adapting the rescue resources to the severity of the accident and reducing assistance time. To improve the overall rescue process, a fast and accurate estimation of the severity of the accident represent a key point to help emergency services better estimate the required resources. This paper proposes a novel intelligent system which is able to automatically detect road accidents, notify them through vehicular networks, and estimate their severity based on the concept of data mining and knowledge inference. Our system considers the most relevant variables that can characterize the severity of the accidents (variables such as the vehicle speed, the type of vehicles involved, the impact speed, and the status of the airbag). Results show that a complete Knowledge Discovery in Databases (KDD) process, with an adequate selection of relevant features, allows generating estimation models that can predict the severity of new accidents. We develop a prototype of our system based on off-the-shelf devices and validate it at the Applus+ IDIADA Automotive Research Corporation facilities, showing that our system can notably reduce the time needed to alert and deploy emergency services after an accident takes place.
vehicular ad hoc networks, artificial intelligence, automotive electronics, data mining, emergency services, intelligent transportation systems, road accidents, road vehicles

M. Fogue, P. Garrido, F. J. Martinez, J. Cano, C. T. Calafate and P. Manzoni, "A System for Automatic Notification and Severity Estimation of Automotive Accidents," in IEEE Transactions on Mobile Computing, vol. 13, no. 5, pp. 948-963, 2014.
680 ms
(Ver 3.3 (11022016))