The Community for Technology Leaders
Green Image
Issue No. 11 - November (2011 vol. 10)
ISSN: 1536-1233
pp: 1618-1631
Tao Gu , University of Southern Denmark, Odense
Liang Wang , University of Southern Denmark, Odense
Hanhua Chen , University of Southern Denmark, Odense
Xianping Tao , Nanjing University, Nanjing
Jian Lu , Nanjing University, Nanjing
The advances of wireless networking and sensor technology open up an interesting opportunity to infer human activities in a smart home environment. Existing work in this paradigm focuses mainly on recognizing activities of single user. In this work, we focus on the fundamental problem of recognizing activities of multiple users using a wireless body sensor network, and propose a scalable pattern mining approach to recognize both single- and multiuser activities in a unified framework. We exploit Emerging Pattern—a discriminative knowledge pattern which describes significant changes among activity classes of data—for building activity models and design a scalable, noise-resistant, Emerging Pattern-based Multiuser Activity Recognizer (epMAR) to recognize both single- and multiuser activities. We develop a multimodal, wireless body sensor network for collecting real-world traces in a smart home environment, and conduct comprehensive empirical studies to evaluate our system. Results show that epMAR outperforms existing schemes in terms of accuracy, scalability, and robustness.
Wireless body sensor networks, sensor-based activity recognition, pattern mining.

J. Lu, H. Chen, X. Tao, L. Wang and T. Gu, "Recognizing Multiuser Activities Using Wireless Body Sensor Networks," in IEEE Transactions on Mobile Computing, vol. 10, no. , pp. 1618-1631, 2011.
82 ms
(Ver 3.3 (11022016))