The Community for Technology Leaders
Green Image
Issue No. 03 - March (2011 vol. 10)
ISSN: 1536-1233
pp: 377-391
Ferruccio Barsi , University of Perugia, Perugia
Alan A. Bertossi , University of Bologna, Bologna
Christian Lavault , University of Paris 13, Paris
Alfredo Navarra , University of Perugia, Perugia
Stephan Olariu , Old Dominion University, Norfolk
M. Cristina Pinotti , University of Perugia, Perugia
Vlady Ravelomanana , University of Paris 13, Paris
In this work, we consider a large-scale geographic area populated by tiny sensors and some more powerful devices called actors, authorized to organize the sensors in their vicinity into short-lived, actor-centric sensor networks. The tiny sensors run on miniature nonrechargeable batteries, are anonymous, and are unaware of their location. The sensors differ in their ability to dynamically alter their sleep times. Indeed, the periodic sensors have sleep periods of predefined lengths, established at fabrication time; by contrast, the free sensors can dynamically alter their sleep periods, under program control. The main contribution of this work is to propose an energy-efficient location training protocol for heterogeneous actor-centric sensor networks where the sensors acquire coarse-grain location awareness with respect to the actor in their vicinity. Our theoretical analysis, confirmed by experimental evaluation, shows that the proposed protocol outperforms the best previously known location training protocols in terms of the number of sleep/awake transitions, overall sensor awake time, and energy consumption.
Sensor and actor networks, heterogeneous sensors, coarse-grain localization, location training protocols, localization protocols.

V. Ravelomanana et al., "Efficient Location Training Protocols for Heterogeneous Sensor and Actor Networks," in IEEE Transactions on Mobile Computing, vol. 10, no. , pp. 377-391, 2010.
88 ms
(Ver 3.3 (11022016))