The Community for Technology Leaders
Green Image
Issue No. 02 - February (2011 vol. 10)
ISSN: 1536-1233
pp: 239-253
H. Vincent Poor , Princeton University, Princeton
Hai Jiang , University of Alberta, Edmonton
Lifeng Lai , University of Arkansas at Little Rock, Little Rock
Hesham El Gamal , Ohio State University, Columbus
This paper considers the design of efficient strategies that allow cognitive users to choose frequency bands to sense and access among multiple bands with unknown parameters. First, the scenario in which a single cognitive user wishes to opportunistically exploit the availability of frequency bands is considered. By adopting tools from the classical bandit problem, optimal as well as low complexity asymptotically optimal solutions are developed. Next, the multiple cognitive user scenario is considered. The situation in which the availability probability of each channel is known is first considered. An optimal symmetric strategy that maximizes the total throughput of the cognitive users is developed. To avoid the possible selfish behavior of the cognitive users, a game-theoretic model is then developed. The performance of both models is characterized analytically. Then, the situation in which the availability probability of each channel is unknown a priori is considered. Low-complexity medium access protocols, which strike an optimal balance between exploration and exploitation in such competitive environments, are developed. The operating points of these low-complexity protocols are shown to converge to those of the scenario in which the availability probabilities are known. Finally, numerical results are provided to illustrate the impact of sensing errors and other practical considerations.
Bandit problem, cognitive radio, exploration, exploitation, medium access.
H. Vincent Poor, Hai Jiang, Lifeng Lai, Hesham El Gamal, "Cognitive Medium Access: Exploration, Exploitation, and Competition", IEEE Transactions on Mobile Computing, vol. 10, no. , pp. 239-253, February 2011, doi:10.1109/TMC.2010.65
99 ms
(Ver 3.1 (10032016))