The Community for Technology Leaders
RSS Icon
Issue No.01 - January (2010 vol.9)
pp: 60-72
Bin Xiao , Hong Kong Polytechnic University, Hong Kong
Lin Chen , IBM China Research Lab, Beijing
Qingjun Xiao , Hong Kong Polytechnic University, Hong Kong
Minglu Li , Shanghai Jiao Tong University, Shanghai
Localization is a fundamental problem in wireless sensor networks and its accuracy impacts the efficiency of location-aware protocols and applications, such as routing and storage. Most previous localization algorithms assume that sensors are distributed in regular areas without holes or obstacles, which often does not reflect real-world conditions, especially for outdoor deployment of wireless sensor networks. In this paper, we propose a novel scheme called Reliable Anchor-based Localization (RAL), which can greatly reduce the localization error due to the irregular deployment areas. We first provide theoretical analysis of the minimum hop length for uniformly distributed networks and then show its close approximation to empirical results, which can assist in the construction of a reliable minimal hop-length table offline. Using this table, we are able to tell whether a path is severely detoured and compute a more accurate average hop length as the basis for distance estimation. At runtime, the RAL scheme 1) utilizes the reliable minimal hop length from the table as the threshold to differentiate between reliable anchors and unreliable ones, and 2) allows each sensor to determine its position utilizing only distance constraints obtained from reliable anchors. The simulation results show that RAL can effectively filter out unreliable anchors and therefore improve the localization accuracy.
Wireless sensor networks, range-free localization, reliable anchor.
Bin Xiao, Lin Chen, Qingjun Xiao, Minglu Li, "Reliable Anchor-Based Sensor Localization in Irregular Areas", IEEE Transactions on Mobile Computing, vol.9, no. 1, pp. 60-72, January 2010, doi:10.1109/TMC.2009.100
[1] Y. Ho and N.H. Vaidya, “Location-Aided Routing (LAR) in Mobile Ad Hoc Networks,” Wireless Networks, vol. 6, pp. 307-321, July 2000.
[2] B.H. Wellenhoff, H. Lichtenegger, and J. Collins, Global Positions System: Theory and Practice. Springer Verlag, 1997.
[3] J. Hightower, G. Boriello, and R. Want, “SpotON: An Indoor 3D Location Sensing Technology Based on RF Signal Strength,” CSE Report, Univ. of Washington, Feb. 2000.
[4] A. Savvides, C. Han, and M.B. Strivastava, “Dynamic Fine-Grained Localization in Ad-Hoc Networks of Sensors,” Proc. ACM MobiCom, pp. 166-179, 2001.
[5] D. Niculescu and B. Nath, “Ad Hoc Positioning System Using AOA,” Proc. IEEE INFOCOM, pp. 1734-1743, Mar. 2003.
[6] N. Bulusu, J. Heidemann, and D. Estrin, “GPS-Less Low Cost Outdoor Localization for Very Small Devices,” IEEE Personal Comm. Magazine, vol. 7, no. 5, pp. 28-34, Oct. 2000.
[7] D. Niculescu and B. Nath, “Ad Hoc Positioning System,” Proc. IEEE GLOBECOM, pp. 2926-2931, Nov. 2001.
[8] C. Savarese, J. Rabaey, and K. Langendoen, “Robust Positioning Algorithm for Distributed Ad Hoc Wireless Sensor Networks,” Proc. USENIX Ann. Technical Conf., pp. 317-327, June 2002.
[9] Y. Shang and W. Ruml, “Improved mds-Based Localization,” Proc. IEEE INFOCOM, pp. 2640-2651, Mar. 2004.
[10] B. Xiao, H. Chen, and S. Zhou, “Distributed Localization Using a Moving Beacon in Wireless Sensor Networks,” IEEE Trans. Parallel and Distributed Systems, vol. 19, no. 5, pp. 587-600, May 2008.
[11] K. Langendoen and N. Reijers, “Distributed Localization in Wireless Sensor Networks: A Quantitative Comparison,” Computer Networks, special issue on wireless sensor networks, vol. 43, pp.499-518, Nov. 2003.
[12] C. Wang and L. Xiao, “Locating Sensors in Concave Areas,” Proc. IEEE INFOCOM, pp. 1-12, Apr. 2006.
[13] L. Kleinrock and J. Silvester, “Optimal Transmission Radii for Packet Radio Networks or Why Six is a Magic Number,” Proc. IEEE Nat'l Telecomm. Conf., pp. 431-435, Dec. 1978.
[14] Y. Shang, H. Shi, and A. Ahmed, “Performance Study of Localization Methods for Ad Hoc Sensor Networks,” Proc. IEEE Int'l Conf. Mobile Ad Hoc and Sensor Systems (MASS '04), pp. 184-193, Oct. 2004.
[15] H. Lim and J.C. Hou, “Localization for Anisotropic Networks,” Proc. IEEE INFOCOM, pp. 138-149, Mar. 2005.
[16] R. Nagpal, H. Shrobe, and J. Bachrach, “Organizing a Global Coordinate System from Local Information on an Ad Hoc Sensor Network,” Proc. Information Processing in Sensor Networks (IPSN '03), pp. 333-348, Apr. 2003.
[17] Q. Xiao, B. Xiao, J. Luo, and G. Liu, “Reliable Navigation of Mobile Sensors in Wireless Sensor Networks without Localization Service,” Proc. Int'l Workshop Quality of Service (IWQoS '09), July 2009.
16 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool