The Community for Technology Leaders
RSS Icon
Issue No.12 - December (2009 vol.8)
pp: 1690-1704
Zaher M. Merhi , University of Louisiana at Lafayette, Lafayette
Mohamed A. Elgamel , University of Louisiana at Lafayette, Lafayette
Magdy A. Bayoumi , University of Louisiana at Lafayette, Lafayette
Efficient target localization in wireless sensor networks is a complex and challenging task. Many past assumptions for target localization are not valid for wireless sensor networks. Limited hardware resources, energy conservation, and noise disruption due to wireless channel contention and instrumentation noise pose new constraints on designers nowadays. In this work, a lightweight acoustic target localization system for wireless sensor networks based on time difference of arrival (TDOA) is presented. When an event is detected, each sensor belonging to a group calculates an estimate of the target's location. A FuzzyART data fusion center detects errors and fuses estimates according to a decision tree based on spatial correlation and consensus vote. Moreover, a MAC protocol for wireless sensor networks (EB-MAC) is developed which is tailored for event-based systems that characterizes acoustic target localization systems. The system was implemented on MicaZ motes with TinyOS and a PIC 18F8720 microcontroller board as a coprocessor. Errors were detected and eliminated hence acquiring a fault tolerant operation. Furthermore, EB-MAC provided a reliable communication platform where high channel contention was lowered while maintaining high throughput.
Data fusion, localization, sensor networks, wireless communication.
Zaher M. Merhi, Mohamed A. Elgamel, Magdy A. Bayoumi, "A Lightweight Collaborative Fault Tolerant Target Localization System for Wireless Sensor Networks", IEEE Transactions on Mobile Computing, vol.8, no. 12, pp. 1690-1704, December 2009, doi:10.1109/TMC.2009.81
[1] Q. Wang et al., “Acoustic Target Tracking Using Tiny Wireless Sensor Devices,” Proc. Second Ann. Workshop Information Processing in Sensor Networks (IPSN '03), pp. 642-657, 2003, doi:10.1007/3-540-36978-3.
[2] A. Lendczi et al., “Countersniper System for Urban Warfare,” ACM Trans. Sensor Networks, vol. 1, no. 2, pp. 153-177, Nov. 2005, doi: 10.1145/1105688.1105689.
[3] Y. You and H. Cha, “Scalable and Low-Cost Acoustic Source Localization for Wireless Sensor Network,” Proc. Ubiquitous Intelligence and Computing (UIC '06), pp. 517-526, 2006, doi: 10.1007/11833529.
[4] J. Zhang et al., “Thunder: Towards Practical, Zero Cost Acoustic Localization for Outdoor Wireless Sensor Networks,” ACM Mobile Computing and Comm. Rev. (SIGMOBILE '07), vol. 11, no. 1, pp. 15-28, Jan. 2007, doi: 10.1145/1234822.1234827.
[5] V. Cevher, R. Velmurugan, and J.H. McClellan, “Acoustic Multitarget Tracking Using Direction-of-Arrival Batches,” IEEE Trans. Signal Processing, vol. 55, no. 6, pp. 2810-2825, June 2007, doi: 10.1109/TSP.2007.893962.
[6] D. Mao, C. Chen, and C. Lee, “Aggressive Rectangle Truncation Localization with Verification Mechanism in Wireless Sensor Networks,” Proc. IEEE Int'l Conf. Wireless and Mobile Comm. (ICWMC '07), p. 45, Mar. 2007, doi: 10.1109/ICWMC.2007.17.
[7] W. Chen, J.C. Hou, and L. Sha, “Dynamic Clustering for Acoustic Target Tracking in Wireless Sensor Networks,” IEEE Trans. Mobile Computing, vol. 3, no. 3, pp. 258-271, July/Aug. 2004, doi: 10.1109/TMC.2004.22.
[8] Z. Merhi, M. Elgamel, and M. Bayoumi, “Fully Decentralized Weighted Kalman Filter for Wireless Sensor Networks with FuzzyART Neural Networks,” Proc. IEEE Symp. Computers and Comm. (ISCC '07), pp. 643-648, July 2007, doi: 10.1109/ISCC.2007.4381515.
[9] A. Kulakov and D. Davcev, “Tracking of Unusual Events in Wireless Sensor Networks Based on Artificial Neural-Networks Algorithms,” Proc. IEEE Int'l Conf. Information Technology (ITCC '05), vol. 2, pp. 534-539, Apr. 2005, doi: 10.1109/ITCC.2005.281.
[10] X. Sheng and Y. Hu, “Maximum Likelihood Multiple-Source Localization Using Acoustic Energy Measurements with Wireless Sensor Networks,” IEEE Trans. Signal Processing, vol. 53, no. 1, pp. 44-53, Jan. 2005, doi: 10.1109/TSP.2004.838930.
[11] Z. Merhi, M. Elgamel, and M. Bayoumi, “Acoustic Target Localization in Sensor Networks with FUZZYART,” Proc. IEEE Midwest Symp. Circuits and Systems (MWSCAS '07), pp. 1536-1539, Aug. 2007, doi: 10.1109/MWSCAS.2007.4488833.
[12] J. Elson, L. Girod, and D. Estrin, “Fine-Grained Network Time Synchronization Using Reference Broadcasts,” Proc. ACM Operating Systems Rev. (SIGOPS '02), vol. 36, pp. 147-163, Dec. 2002, doi: 10.1145/844128.844143.
[13] S. Ganeriwal, R. Kumar, and M.B. Srivastava, “Timing-Sync Protocol for Sensor Networks,” Proc. ACM Conf. Embedded Networked Sensor Systems (SENSYS '03), pp. 138-149, Nov. 2003, doi: 10.1145/958491.958508.
[14] M. Marti, B. Kusy, G. Simon, and Á. Ldeczi, “The Flooding Time Synchronization Protocol,” Proc. ACM Conf. Embedded Networked Sensor Systems (SENSYS '04), pp. 39-49, Nov. 2004, doi: 10.1145/1031495.1031501.
[15] Crossbow, MoteView,, 2008.
[16] C.H. Knapp and G.C. Carter, “The Generalized Correlation Method for Estimation of Time Delay,” IEEE Trans. Acoustics, Speech and Signal Processing, vol. 24, no. 4, pp. 320-327, Aug. 1976.
[17] E.F. Nakamura, A.A. Loureiro, and A.C. Frery, “Information Fusion for Wireless Sensor Networks: Methods, Models, and Classifications,” ACM Computing Surveys (CSUR '07), vol. 39, no. 3, p. 55, Sept. 2007, doi:10.1145/1267070.1267073.
[18] G.A. Carpenter, S. Grossberg, and D.B. Rosen, “Fuzzy ART: Fast Stable Learning and Categorization of Analog Patterns by an Adaptive Resonance System,” ACM Neural Network, vol. 4, no. 6, pp. 759-771, Nov. 1991, doi:10.1016/0893-6080(91)90056-B.
[19] A.H.G. Al-Dhaher, E.A. Farsi, and D. Mackesy, “Data Fusion Architecture—An FPGA Implementation,” Proc. IEEE Conf. Instrumentation and Measurement Technology (IMTC '05), vol. 3, pp. 1985-1990, May 2005, doi: 10.1109/IMTC.2005.1604519.
[20] W. Ye, J. Heidemann, and D. Estrin, “An Energy-Efficient MAC Protocol for Wireless Sensor Networks,” Proc. IEEE INFOCOM, vol. 3, pp. 1567-1567, June 2002, doi:10.1109/INFCOM.2002. 1019408.
[21] T.V. Dam and K. Langendoen, “An Adaptive Energy-Efficient MAC Protocol for Wireless Sensor Networks,” Proc. ACM Conf. Embedded Networked Sensor Systems (SENSYS '03), pp. 171-180, Nov. 2003, doi:10.1145/958491.958512.
[22] J. Polastre, J. Hill, and D. Culler, “Versatile Low Power Media Access for Wireless Sensor Networks,” Proc. ACM Conf. Embedded Networked Sensor Systems (SENSYS '04), pp. 95-107, Nov. 2004. doi:10.1145/1031495.1031508.
[23] G. Ahn et al., “Funneling-MAC: A Localized, Sink-Oriented MAC for Boosting Fidelity in Sensor Networks,” Proc. ACM Conf. Embedded Networked Sensor Systems (SENSYS '06), pp. 293-306, Nov. 2006, doi:10.1145/1182807.1182837.
[24] I. Rhee et al., “Z-MAC: A Hybrid MAC for Wireless Sensor Networks,” Proc. ACM Conf. Embedded Networked Sensor Systems (SENSYS '05), pp. 90-101, Nov. 2005, doi:1098918.1098929.
[25] I. Rhee, A. Warrier, and L. Xu, “Randomized Dining Philosophers to TDMA Scheduling in Wireless Sensor Networks,” technical report, Computer Science Dept., North Carolina State Univ., 2004.
[26] TinyOS CVS Repository at SourceForge, Univ. of California,, 2004.
[27] Crossbow Technology Inc., Mica2 Data Sheet, http:/, 2008.
[28] Crossbow Technology Inc., MicaZ Data Sheet, http:/, 2008.
[29] Chipcon Inc., CC2420 Data Sheet, http:/, 2008.
[30] Crossbow Technology Inc., MDA320CA Data Sheet, http:/, 2008.
[31] PIC 18F8720 Demo Board, http://www.futurlec.comPIC18F8720_Controller.shtml , 2008.
[32] The Network Simulator NS-2,, 2008.
[33] A. Acharya, A. Misra, and S. Bansal, “MACA-P: A MAC for Concurrent Transmissions in Multi-Hop Wireless Networks,” Proc. IEEE Conf. Pervasive Computing and Comm. (PerCom '03), pp. 505-508, Mar. 2000.
[34] G.Y. Lazarou, J. Li, and J. Picone, “A Cluster-Based Power-Efficient MAC Scheme for Event-Driven Sensing Applications,” Ad Hoc Networks, vol. 5, no. 7, pp. 1017-1030, Sept. 2007. doi:10.1016/j.adhoc.2006.05.001.
[35] Chipcon Inc., CC1100 Data Sheet, http:/, 2008.
[36] Crossbow Technology Inc., MTS310 Data Sheet, http:/, 2008.
[37] C. Peng et al., “BeepBeep: A High Accuracy Acoustic Ranging System Using COTS Mobile Devices,” Proc. ACM Conf. Embedded Networked Sensor Systems (SENSYS '07), pp. 1-14, Nov. 2007. doi: 10.1145/1322263.1322265.
[38] Crossbow Technology Inc., MIB510 Data Sheet, http:/, 2008.
15 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool