The Community for Technology Leaders
Green Image
In heterogeneous wireless networks, handoff can be separated into two parts: horizontal handoff (HHO) and vertical handoff (VHO). VHO plays an important role to fulfill seamless data transfer when mobile nodes cross wireless access networks with different link layer technologies. Current VHO algorithms mainly focus on when to trigger VHO, but neglect the problem of how to synthetically consider all currently available networks (homogeneous or heterogeneous) and choose the optimal network for HHO or VHO from all the available candidates. In this paper, we present an analytical framework to evaluate VHO algorithms. Subsequently, we extend the traditional hysteresis based and dwelling-timer based algorithms to support both VHO and HHO decisions and apply them to complex heterogeneous wireless environments. We refer to these enhanced algorithms as E-HY and E-DW, respectively. Based on the proposed analytical model, we provide a formalization definition of the handoff conditions in E-HY and E-DW and analyze their performance. Subsequently, we propose a novel general handoff decision algorithm, GHO, to trigger HHO and VHO in heterogeneous wireless networks. Analysis shows that GHO can achieve better performance than E-HY and E-DW. Simulations validate the analytical results and verify that GHO outperforms traditional algorithms in terms of the matching ratio, TCP throughput and UDP throughput.
Network communications, Wireless communication, Network management, Mobile communication systems, Algorithm/protocol design and analysis

M. Liu, E. Dutkiewicz, X. Guo and Z. Li, "Performance Analysis and Optimization of Handoff Algorithms in Heterogeneous Wireless Networks," in IEEE Transactions on Mobile Computing, vol. 7, no. , pp. 846-857, 2007.
139 ms
(Ver 3.3 (11022016))