The Community for Technology Leaders
Green Image
We present PowerNap, an OS power management scheme, which can significantly improve the battery life of mobile devices. The key feature of PowerNap is the skipping of the periodic system timer ticks associated with the operating system. On an idle device, this modification increases the time between successive timer interrupts and enables us to put the processor/system into a more efficient low power state. This saves the energy consumed by workless timer interrupts and the excess energy consumed by the processor in less efficient low power states. PowerNap is tightly integrated with the kernel and is designed for optimal control of the latency and energy associated with transitioning in and out of the low power states. We describe an implementation of PowerNap and its impact on system software. Experiments with IBM's WatchPad verify the ability of PowerNap to extend battery life. An analytical model that quantifies the ability of the scheme to reduce power is also presented. The model is in good agreement with experimental results. We apply the model to small form-factor devices which use processors that have a PowerDown state. In such devices, PowerNap may extend battery life by more than 42 percent for small processor workloads and for background power levels below 10 mW.
Power management, operating systems, mobile systems, processors.
C. Michael Olsen, Chandra Narayanaswami, "PowerNap: An Efficient Power Management Scheme for Mobile Devices", IEEE Transactions on Mobile Computing, vol. 5, no. , pp. 816-828, July 2006, doi:10.1109/TMC.2006.103
80 ms
(Ver 3.3 (11022016))