The Community for Technology Leaders
Green Image
Issue No. 10 - Oct. (2018 vol. 30)
ISSN: 1041-4347
pp: 1929-1942
Austin J. Brockmeier , School of Electrical Engineering, Electronics, & Computer Science, University of Liverpool, Liverpool, United Kingdom
Tingting Mu , School of Computer Science, University of Manchester, Manchester, United Kingdom
Sophia Ananiadou , School of Computer Science, University of Manchester, Manchester, United Kingdom
John Y. Goulermas , School of Electrical Engineering, Electronics, & Computer Science, University of Liverpool, Liverpool, United Kingdom
ABSTRACT
Descriptive clustering consists of automatically organizing data instances into clusters and generating a descriptive summary for each cluster. The description should inform a user about the contents of each cluster without further examination of the specific instances, enabling a user to rapidly scan for relevant clusters. Selection of descriptions often relies on heuristic criteria. We model descriptive clustering as an auto-encoder network that predicts features from cluster assignments and predicts cluster assignments from a subset of features. The subset of features used for predicting a cluster serves as its description. For text documents, the occurrence or count of words, phrases, or other attributes provides a sparse feature representation with interpretable feature labels. In the proposed network, cluster predictions are made using logistic regression models, and feature predictions rely on logistic or multinomial regression models. Optimizing these models leads to a completely self-tuned descriptive clustering approach that automatically selects the number of clusters and the number of features for each cluster. We applied the methodology to a variety of short text documents and showed that the selected clustering, as evidenced by the selected feature subsets, are associated with a meaningful topical organization.
INDEX TERMS
Predictive models, Logistics, Feature extraction, Motion pictures, Clustering algorithms, Prediction algorithms, Analytical models
CITATION

A. J. Brockmeier, T. Mu, S. Ananiadou and J. Y. Goulermas, "Self-Tuned Descriptive Document Clustering Using a Predictive Network," in IEEE Transactions on Knowledge & Data Engineering, vol. 30, no. 10, pp. 1929-1942, 2018.
doi:10.1109/TKDE.2017.2781721
745 ms
(Ver 3.3 (11022016))