The Community for Technology Leaders
Green Image
Issue No. 06 - June (2016 vol. 28)
ISSN: 1041-4347
pp: 1602-1606
Bo Tang , Department of Electrical, Computer and Biomedical Engineering at the University of Rhode Island, Kingston, RI
Haibo He , Department of Electrical, Computer and Biomedical Engineering at the University of Rhode Island, Kingston, RI
Paul M. Baggenstoss , Frauhnhofer FKIE, Fraunhoferstr 20, Wachtberg, Germany
Steven Kay , Department of Electrical, Computer and Biomedical Engineering at the University of Rhode Island, Kingston, RI
ABSTRACT
In this paper, we present a Bayesian classification approach for automatic text categorization using class-specific features. Unlike conventional text categorization approaches, our proposed method selects a specific feature subset for each class. To apply these class-specific features for classification, we follow Baggenstoss's PDF Projection Theorem (PPT) to reconstruct the PDFs in raw data space from the class-specific PDFs in low-dimensional feature subspace, and build a Bayesian classification rule. One noticeable significance of our approach is that most feature selection criteria, such as Information Gain (IG) and Maximum Discrimination (MD), can be easily incorporated into our approach. We evaluate our method's classification performance on several real-world benchmarks, compared with the state-of-the-art feature selection approaches. The superior results demonstrate the effectiveness of the proposed approach and further indicate its wide potential applications in data mining.
INDEX TERMS
Text categorization, Indexes, Bayes methods, Biomedical measurement, Benchmark testing, Dictionaries
CITATION

B. Tang, H. He, P. M. Baggenstoss and S. Kay, "A Bayesian Classification Approach Using Class-Specific Features for Text Categorization," in IEEE Transactions on Knowledge & Data Engineering, vol. 28, no. 6, pp. 1602-1606, 2016.
doi:10.1109/TKDE.2016.2522427
185 ms
(Ver 3.3 (11022016))