The Community for Technology Leaders
Green Image
Issue No. 02 - Feb. (2015 vol. 27)
ISSN: 1041-4347
pp: 489-503
Jing Zhang , School of Computer Science and Information Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, China
Xindong Wu , School of Computer Science and Information Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, China
Victor S. Sheng , Department of Computer Science, University of Central Arkansas, Conway
ABSTRACT
It can be easy to collect multiple noisy labels for the same object via Internet-based crowdsourcing systems. Labelers may have bias when labeling, due to lacking expertise, dedication, and personal preference. These cause Imbalanced Multiple Noisy Labeling. In most cases, we have no information about the labeling qualities of labelers and the underlying class distributions. It is important to design agnostic solutions to utilize these noisy labels for supervised learning. We first investigate how imbalanced multiple noisy labeling affects the class distributions of training sets and the performance of classification. Then, an agnostic algorithm Positive LAbel frequency Threshold (PLAT) is proposed to deal with the imbalanced labeling issue. Simulations on eight UCI data sets with different underlying class distributions show that PLAT not only effectively deals with the imbalanced multiple noisy labeling problems that off-the-shelf agnostic methods cannot cope with, but also performs nearly the same as majority voting under the circumstances without imbalance. We also apply PLAT to eight real-world data sets with imbalanced labels collected from Amazon Mechanical Turk, and the experimental results show that PLAT is efficient and better than other ground truth inference algorithms.
INDEX TERMS
Labeling, Noise measurement, Training, Educational institutions, Accuracy, Supervised learning,crowdsourcing, Imbalanced noisy labeling, imbalanced learning, repeated labeling
CITATION
Jing Zhang, Xindong Wu, Victor S. Sheng, "Imbalanced Multiple Noisy Labeling", IEEE Transactions on Knowledge & Data Engineering, vol. 27, no. , pp. 489-503, Feb. 2015, doi:10.1109/TKDE.2014.2327039
190 ms
(Ver 3.3 (11022016))