The Community for Technology Leaders
Green Image
Issue No. 04 - April (2014 vol. 26)
ISSN: 1041-4347
pp: 864-877
Ali Shahbazi , Dept. of Electr. & Comput. Eng., Univ. of Alberta, Edmonton, AB, Canada
James Miller , Dept. of Electr. & Comput. Eng., Univ. of Alberta, Edmonton, AB, Canada
Although several distance or similarity functions for trees have been introduced, their performance is not always satisfactory in many applications, ranging from document clustering to natural language processing. This research proposes a new similarity function for trees, namely Extended Subtree (EST), where a new subtree mapping is proposed. EST generalizes the edit base distances by providing new rules for subtree mapping. Further, the new approach seeks to resolve the problems and limitations of previous approaches. Extensive evaluation frameworks are developed to evaluate the performance of the new approach against previous proposals. Clustering and classification case studies utilizing three real-world and one synthetic labeled data sets are performed to provide an unbiased evaluation where different distance functions are investigated. The experimental results demonstrate the superior performance of the proposed distance function. In addition, an empirical runtime analysis demonstrates that the new approach is one of the best tree distance functions in terms of runtime efficiency.
Runtime, Complexity theory, Entropy, Indexes, Support vector machines, Distance measurement

A. Shahbazi and J. Miller, "Extended Subtree: A New Similarity Function for Tree Structured Data," in IEEE Transactions on Knowledge & Data Engineering, vol. 26, no. 4, pp. 864-877, 2014.
1015 ms
(Ver 3.3 (11022016))