The Community for Technology Leaders
Green Image
Issue No. 10 - Oct. (2013 vol. 25)
ISSN: 1041-4347
pp: 2381-2389
Mehmet Gonen , Aalto University School of Science, Espoo
ABSTRACT
For supervised learning problems, dimensionality reduction is generally applied as a preprocessing step. However, coupled training of dimensionality reduction and supervised learning steps may improve the prediction performance. In this paper, we propose a novel dimensionality reduction algorithm coupled with a supervised kernel-based learner, called supervised multiple kernel embedding, that integrates multiple kernel learning to dimensionality reduction and performs prediction on the projected subspace with a joint optimization framework. Combining multiple kernels allows us to combine different feature representations and/or similarity measures toward a unified subspace. We perform experiments on one digit recognition and two bioinformatics data sets. Our proposed method significantly outperforms multiple kernel Fisher discriminant analysis followed by a standard kernel-based learner, especially on low dimensions.
INDEX TERMS
Kernel, Training, Optimization, Vectors, Supervised learning, Support vector machines, Standards, subspace learning, Kernel, Training, Optimization, Vectors, Supervised learning, Support vector machines, Standards, supervised learning, Dimensionality reduction, kernel machines, multiple kernel learning
CITATION
Mehmet Gonen, "Supervised Multiple Kernel Embedding for Learning Predictive Subspaces", IEEE Transactions on Knowledge & Data Engineering, vol. 25, no. , pp. 2381-2389, Oct. 2013, doi:10.1109/TKDE.2012.213
96 ms
(Ver 3.3 (11022016))