The Community for Technology Leaders
Green Image
Issue No. 10 - Oct. (2013 vol. 25)
ISSN: 1041-4347
pp: 2283-2301
Robi Polikar , Rowan University, Glassboro
Gregory Ditzler , Drexel University, Philadelphia
ABSTRACT
Learning in nonstationary environments, also known as learning concept drift, is concerned with learning from data whose statistical characteristics change over time. Concept drift is further complicated if the data set is class imbalanced. While these two issues have been independently addressed, their joint treatment has been mostly underexplored. We describe two ensemble-based approaches for learning concept drift from imbalanced data. Our first approach is a logical combination of our previously introduced Learn++.NSE algorithm for concept drift, with the well-established SMOTE for learning from imbalanced data. Our second approach makes two major modifications to Learn++.NSE-SMOTE integration by replacing SMOTE with a subensemble that makes strategic use of minority class data; and replacing Learn++.NSE and its class-independent error weighting mechanism with a penalty constraint that forces the algorithm to balance accuracy on all classes. The primary novelty of this approach is in determining the voting weights for combining ensemble members, based on each classifier's time and imbalance-adjusted accuracy on current and past environments. Favorable results in comparison to other approaches indicate that both approaches are able to address this challenging problem, each with its own specific areas of strength. We also release all experimental data as a resource and benchmark for future research.
INDEX TERMS
Classification algorithms, Heuristic algorithms, Joints, Electronic mail, Knowledge engineering, Data models, Algorithm design and analysis, class imbalance, Classification algorithms, Heuristic algorithms, Joints, Electronic mail, Knowledge engineering, Data models, Algorithm design and analysis, multiple classifier systems, Incremental learning, concept drift
CITATION
Robi Polikar, Gregory Ditzler, "Incremental Learning of Concept Drift from Streaming Imbalanced Data", IEEE Transactions on Knowledge & Data Engineering, vol. 25, no. , pp. 2283-2301, Oct. 2013, doi:10.1109/TKDE.2012.136
197 ms
(Ver )