The Community for Technology Leaders
Green Image
Issue No. 04 - April (2013 vol. 25)
ISSN: 1041-4347
pp: 893-905
Junming Shao , Inst. for Comput. Sci., Ludwig-Maximilians-Univ. Munchen, Munich, Germany
Xiao He , Inst. for Comput. Sci., Ludwig-Maximilians-Univ. Munchen, Munich, Germany
C. Bohm , Inst. for Comput. Sci., Ludwig-Maximilians-Univ. Munchen, Munich, Germany
Qinli Yang , Inst. for Infrastruct. & Environ., Ludwig-Maximilians-Univ. Munchen, Munich, Germany
C. Plant , Dept. of Sci. Comput., Florida State Univ., Munich, Germany
Synchronization is a powerful and inherently hierarchical concept regulating a large variety of complex processes ranging from the metabolism in a cell to opinion formation in a group of individuals. Synchronization phenomena in nature have been widely investigated and models concisely describing the dynamical synchronization process have been proposed, e.g., the well-known Extensive Kuramoto Model. We explore the potential of the Extensive Kuramoto Model for data clustering. We regard each data object as a phase oscillator and simulate the dynamical behavior of the objects over time. By interaction with similar objects, the phase of an object gradually aligns with its neighborhood, resulting in a nonlinear object movement naturally driven by the local cluster structure. We demonstrate that our framework has several attractive benefits: 1) It is suitable to detect clusters of arbitrary number, shape, and data distribution, even in difficult settings with noise points and outliers. 2) Combined with the Minimum Description Length (MDL) principle, it allows partitioning and hierarchical clustering without requiring any input parameters which are difficult to estimate. 3) Synchronization faithfully captures the natural hierarchical cluster structure of the data and MDL suggests meaningful levels of abstraction. Extensive experiments demonstrate the effectiveness and efficiency of our approach.
Synchronization, Clustering algorithms, Oscillators, Data models, Partitioning algorithms, Biological system modeling, Heuristic algorithms, Kuramoto model, Synchronization, clustering

C. Plant, Junming Shao, C. Bohm, Qinli Yang and Xiao He, "Synchronization-Inspired Partitioning and Hierarchical Clustering," in IEEE Transactions on Knowledge & Data Engineering, vol. 25, no. , pp. 893-905, 2013.
167 ms
(Ver 3.3 (11022016))