The Community for Technology Leaders
Green Image
Issue No. 03 - March (2013 vol. 25)
ISSN: 1041-4347
pp: 677-689
Stefania Montani , Università del Piemonte Orientale, Alessandria
Giorgio Leonardi , Università del Piemonte Orientale, Alessandria
Alessio Bottrighi , Università del Piemonte Orientale, Alessandria
Luigi Portinale , Università del Piemonte Orientale, Alessandria
Paolo Terenziani , Università del Piemonte Orientale, Alessandria
Supporting decision making in domains in which the observed phenomenon dynamics have to be dealt with, can greatly benefit of retrieval of past cases, provided that proper representation and retrieval techniques are implemented. In particular, when the parameters of interest take the form of time series, dimensionality reduction and flexible retrieval have to be addresses to this end. Classical methodological solutions proposed to cope with these issues, typically based on mathematical transforms, are characterized by strong limitations, such as a difficult interpretation of retrieval results for end users, reduced flexibility and interactivity, or inefficiency. In this paper, we describe a novel framework, in which time-series features are summarized by means of Temporal Abstractions, and then retrieved resorting to abstraction similarity. Our approach grants for interpretability of the output results, and understandability of the (user-guided) retrieval process. In particular, multilevel abstraction mechanisms and proper indexing techniques are provided, for flexible query issuing, and efficient and interactive query answering. Experimental results have shown the efficiency of our approach in a scalability test, and its superiority with respect to the use of a classical mathematical technique in flexibility, user friendliness, and also quality of results.
Time series analysis, Taxonomy, Decision making, Indexes, Context awareness, Information retrieval, Search methods, Knowledge representation, information search and retrieval, Decision support, knowledge representation formalisms and methods, knowledge retrieval

L. Portinale, P. Terenziani, G. Leonardi, A. Bottrighi and S. Montani, "Supporting Flexible, Efficient, and User-Interpretable Retrieval of Similar Time Series," in IEEE Transactions on Knowledge & Data Engineering, vol. 25, no. , pp. 677-689, 2013.
92 ms
(Ver 3.3 (11022016))