The Community for Technology Leaders
Green Image
Issue No. 06 - June (2012 vol. 24)
ISSN: 1041-4347
pp: 1051-1064
Hao Ma , The Chinese University of Hong Kong, Hong Kong
Michael Rung-Tsong Lyu , The Chinese University of Hong Kong, Hong Kong
Irwin King , The Chinese University of Hong Kong, Hong Kong
ABSTRACT
As the exponential explosion of various contents generated on the Web, Recommendation techniques have become increasingly indispensable. Innumerable different kinds of recommendations are made on the Web every day, including movies, music, images, books recommendations, query suggestions, tags recommendations, etc. No matter what types of data sources are used for the recommendations, essentially these data sources can be modeled in the form of various types of graphs. In this paper, aiming at providing a general framework on mining Web graphs for recommendations, 1) we first propose a novel diffusion method which propagates similarities between different nodes and generates recommendations; 2) then we illustrate how to generalize different recommendation problems into our graph diffusion framework. The proposed framework can be utilized in many recommendation tasks on the World Wide Web, including query suggestions, tag recommendations, expert finding, image recommendations, image annotations, etc. The experimental analysis on large data sets shows the promising future of our work.
INDEX TERMS
Recommendation, diffusion, query suggestion, image recommendation.
CITATION
Hao Ma, Michael Rung-Tsong Lyu, Irwin King, "Mining Web Graphs for Recommendations", IEEE Transactions on Knowledge & Data Engineering, vol. 24, no. , pp. 1051-1064, June 2012, doi:10.1109/TKDE.2011.18
82 ms
(Ver 3.1 (10032016))