The Community for Technology Leaders
Green Image
Issue No. 06 - June (2012 vol. 24)
ISSN: 1041-4347
pp: 988-1001
Chee Keong Chan , Div. of Inf. Eng., Nanyang Technol. Univ., Singapore, Singapore
Lihui Chen , Div. of Inf. Eng., Nanyang Technol. Univ., Singapore, Singapore
Duc Thang Nguyen , Div. of Inf. Eng., Nanyang Technol. Univ., Singapore, Singapore
All clustering methods have to assume some cluster relationship among the data objects that they are applied on. Similarity between a pair of objects can be defined either explicitly or implicitly. In this paper, we introduce a novel multiviewpoint-based similarity measure and two related clustering methods. The major difference between a traditional dissimilarity/similarity measure and ours is that the former uses only a single viewpoint, which is the origin, while the latter utilizes many different viewpoints, which are objects assumed to not be in the same cluster with the two objects being measured. Using multiple viewpoints, more informative assessment of similarity could be achieved. Theoretical analysis and empirical study are conducted to support this claim. Two criterion functions for document clustering are proposed based on this new measure. We compare them with several well-known clustering algorithms that use other popular similarity measures on various document collections to verify the advantages of our proposal.
pattern clustering, document handling, clustering algorithm, multiviewpoint-based similarity measure, data objects, dissimilarity measure, informative assessment, document clustering, Clustering algorithms, Strontium, Euclidean distance, Current measurement, Proposals, Partitioning algorithms, Algorithm design and analysis, similarity measure., Document clustering, text mining

Chee Keong Chan, Lihui Chen and Duc Thang Nguyen, "Clustering with Multiviewpoint-Based Similarity Measure," in IEEE Transactions on Knowledge & Data Engineering, vol. 24, no. , pp. 988-1001, 2012.
97 ms
(Ver 3.3 (11022016))