The Community for Technology Leaders
Green Image
Issue No. 05 - May (2012 vol. 24)
ISSN: 1041-4347
pp: 912-925
Heasoo Hwang , Samsung Advanced Institute of Technology, Yongin-si
Hady W. Lauw , Institute for Infocomm Research, Singapore
Lise Getoor , University of Maryland, College Park
Alexandros Ntoulas , Microsoft Research, Mountain View
Users are increasingly pursuing complex task-oriented goals on the web, such as making travel arrangements, managing finances, or planning purchases. To this end, they usually break down the tasks into a few codependent steps and issue multiple queries around these steps repeatedly over long periods of time. To better support users in their long-term information quests on the web, search engines keep track of their queries and clicks while searching online. In this paper, we study the problem of organizing a user's historical queries into groups in a dynamic and automated fashion. Automatically identifying query groups is helpful for a number of different search engine components and applications, such as query suggestions, result ranking, query alterations, sessionization, and collaborative search. In our approach, we go beyond approaches that rely on textual similarity or time thresholds, and we propose a more robust approach that leverages search query logs. We experimentally study the performance of different techniques, and showcase their potential, especially when combined together.
User history, search history, query clustering, query reformulation, click graph, task identification.

H. W. Lauw, L. Getoor, H. Hwang and A. Ntoulas, "Organizing User Search Histories," in IEEE Transactions on Knowledge & Data Engineering, vol. 24, no. , pp. 912-925, 2010.
106 ms
(Ver 3.1 (10032016))