The Community for Technology Leaders
Green Image
Issue No. 04 - April (2012 vol. 24)
ISSN: 1041-4347
pp: 692-706
Yunhao Liu , TNLIST, Tsinghua University, China and The Hong Kong University of Science and Technology, Hong Kong
Hanhua Chen , Huazhong University of Science and Technology, Wuhan
Hai Jin , Huazhong University of Science and Technology, Wuhan
Lei Chen , The Hong Kong University of Science and Technology, Hong Kong
Lionel M. Ni , Shanghai Jiao Tong University, Shanghai and The Hong Kong University of Science and Technology, Hong Kong
ABSTRACT
Peer-to-Peer multikeyword searching requires distributed intersection/union operations across wide area networks, raising a large amount of traffic cost. Existing schemes commonly utilize Bloom Filters (BFs) encoding to effectively reduce the traffic cost during the intersection/union operations. In this paper, we address the problem of optimizing the settings of a BF. We show, through mathematical proof, that the optimal setting of BF in terms of traffic cost is determined by the statistical information of the involved inverted lists, not the minimized false positive rate as claimed by previous studies. Through numerical analysis, we demonstrate how to obtain optimal settings. To better evaluate the performance of this design, we conduct comprehensive simulations on TREC WT10G test collection and query logs of a major commercial web search engine. Results show that our design significantly reduces the search traffic and latency of the existing approaches.
INDEX TERMS
Bloom filter, DHT, multikeyword search, P2P.
CITATION
Yunhao Liu, Hanhua Chen, Hai Jin, Lei Chen, Lionel M. Ni, "Optimizing Bloom Filter Settings in Peer-to-Peer Multikeyword Searching", IEEE Transactions on Knowledge & Data Engineering, vol. 24, no. , pp. 692-706, April 2012, doi:10.1109/TKDE.2011.14
99 ms
(Ver )