The Community for Technology Leaders
Green Image
Issue No. 04 - April (2012 vol. 24)
ISSN: 1041-4347
pp: 619-633
Leandro L. Minku , The University of Birmingham, Birmingham
Xin Yao , The University of Birmingham, Birmingham
Online learning algorithms often have to operate in the presence of concept drifts. A recent study revealed that different diversity levels in an ensemble of learning machines are required in order to maintain high generalization on both old and new concepts. Inspired by this study and based on a further study of diversity with different strategies to deal with drifts, we propose a new online ensemble learning approach called Diversity for Dealing with Drifts (DDD). DDD maintains ensembles with different diversity levels and is able to attain better accuracy than other approaches. Furthermore, it is very robust, outperforming other drift handling approaches in terms of accuracy when there are false positive drift detections. In all the experimental comparisons we have carried out, DDD always performed at least as well as other drift handling approaches under various conditions, with very few exceptions.
Concept drift, online learning, ensembles of learning machines, diversity.

L. L. Minku and X. Yao, "DDD: A New Ensemble Approach for Dealing with Concept Drift," in IEEE Transactions on Knowledge & Data Engineering, vol. 24, no. , pp. 619-633, 2011.
87 ms
(Ver 3.3 (11022016))