The Community for Technology Leaders
Green Image
Issue No. 03 - March (2012 vol. 24)
ISSN: 1041-4347
pp: 399-412
Moisés G. de Carvalho , Nokia INdT, Brazil
Alberto H.F. Laender , Federal University of Minas Gerais, Belo Horizonte
Marcos André Gonçalves , Federal University of Minas Gerais, Belo Horizonte
Altigran S. da Silva , Federal University of Amazonas, Manaus
Several systems that rely on consistent data to offer high-quality services, such as digital libraries and e-commerce brokers, may be affected by the existence of duplicates, quasi replicas, or near-duplicate entries in their repositories. Because of that, there have been significant investments from private and government organizations for developing methods for removing replicas from its data repositories. This is due to the fact that clean and replica-free repositories not only allow the retrieval of higher quality information but also lead to more concise data and to potential savings in computational time and resources to process this data. In this paper, we propose a genetic programming approach to record deduplication that combines several different pieces of evidence extracted from the data content to find a deduplication function that is able to identify whether two entries in a repository are replicas or not. As shown by our experiments, our approach outperforms an existing state-of-the-art method found in the literature. Moreover, the suggested functions are computationally less demanding since they use fewer evidence. In addition, our genetic programming approach is capable of automatically adapting these functions to a given fixed replica identification boundary, freeing the user from the burden of having to choose and tune this parameter.
Database administration, evolutionary computing and genetic algorithms, database integration.

M. A. Gonçalves, A. H. Laender, M. G. de Carvalho and A. S. da Silva, "A Genetic Programming Approach to Record Deduplication," in IEEE Transactions on Knowledge & Data Engineering, vol. 24, no. , pp. 399-412, 2010.
91 ms
(Ver 3.3 (11022016))