The Community for Technology Leaders
Green Image
Issue No. 02 - February (2012 vol. 24)
ISSN: 1041-4347
pp: 338-352
Panos Kalnis , KAUST, Thuwal
Christian S. Jensen , Aarhus University, Aarhus
Ira Assent , Aarhus University, Aarhus
Man Lung Yiu , Hong Kong Polytechnic University, Hong Kong
This paper considers a cloud computing setting in which similarity querying of metric data is outsourced to a service provider. The data is to be revealed only to trusted users, not to the service provider or anyone else. Users query the server for the most similar data objects to a query example. Outsourcing offers the data owner scalability and a low-initial investment. The need for privacy may be due to the data being sensitive (e.g., in medicine), valuable (e.g., in astronomy), or otherwise confidential. Given this setting, the paper presents techniques that transform the data prior to supplying it to the service provider for similarity queries on the transformed data. Our techniques provide interesting trade-offs between query cost and accuracy. They are then further extended to offer an intuitive privacy guarantee. Empirical studies with real data demonstrate that the techniques are capable of offering privacy while enabling efficient and accurate processing of similarity queries.
Query processing, Security, integrity, and protection.
Panos Kalnis, Christian S. Jensen, Ira Assent, Man Lung Yiu, "Outsourced Similarity Search on Metric Data Assets", IEEE Transactions on Knowledge & Data Engineering, vol. 24, no. , pp. 338-352, February 2012, doi:10.1109/TKDE.2010.222
256 ms
(Ver )